Propagation of Solitons in Quasi-periodic Nonlinear Coupled Waveguides

被引:5
|
作者
Cardoso, Wesley Bueno [1 ]
Avelar, Ardiley Torres [1 ]
Bazeia, Dionisio [2 ]
机构
[1] Univ Fed Goias, Inst Fis, BR-74690900 Goiania, Go, Brazil
[2] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
关键词
Manakov system; Solitons; Quasi-periodic interactions;
D O I
10.1007/s13538-020-00836-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is a tribute to Professor Mahir Saleh Hussein. It is motivated by two works which we published in collaboration in Cardoso et al. (Phys. Lett. A 374, 2356 2010, 374, 4594 2010). Here, we study the propagation of solitons in nonlinear coupled waveguides described by coupled nonlinear Schrodinger equations. In a specific case, these coupled equations behave as an exactly integrable nonlinear system known as the Manakov model. We introduce quasi-periodic nonlinear couplings by merging the components that allow changing the nonlinearities of the system, and study how the quasi-periodic nonlinearities modify the behavior of the solutions.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [31] Particle propagation in a random and quasi-periodic potential
    Borgonovi, F
    Shepelyansky, DL
    PHYSICA D-NONLINEAR PHENOMENA, 1997, 109 (1-2) : 24 - 31
  • [32] Wave Propagation in Quasi-Periodic Particle Chains
    Mazor, Yarden
    Steinberg, Ben Z.
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 1420 - 1421
  • [33] Wave propagation in a quasi-periodic waveguide network
    Sengupta, S
    Chakrabarti, A
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 28 (01): : 28 - 36
  • [34] Quasi-periodic solutions of a class of nonlinear quasi-periodic systems with Liouvillean frequencies and multiple eigenvalues ☆
    Zhang, Dongfeng
    Xu, Junxiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 427 : 350 - 403
  • [35] Quasi-periodic solutions for quasi-periodically forced nonlinear Schrodinger equations with quasi-periodic inhomogeneous terms
    Rui, Jie
    Si, Jianguo
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 286 : 1 - 31
  • [36] Coupled systems with quasi-periodic and chaotic dynamics
    Kuznetsov, Alexander P.
    Sedova, Yuliya, V
    Stankevich, Nataliya, V
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [37] Quasi-periodic states in coupled rings of cells
    Antoneli, Fernando
    Dias, Ana Paula S.
    Pinto, Carla M. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) : 1048 - 1062
  • [38] Modeling of nonlinear pulse propagation in periodic and quasi-periodic binary long-period fiber gratings
    Chern, GW
    Chang, JF
    Wang, LA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (07) : 1497 - 1508
  • [39] PERIODIC AND QUASI-PERIODIC REGIMES IN SELF-COUPLED LASERS
    LI, RD
    MANDEL, P
    ERNEUX, T
    PHYSICAL REVIEW A, 1990, 41 (09): : 5117 - 5126
  • [40] Control of light propagation in one-dimensional quasi-periodic nonlinear photonic lattices
    Radosavljevic, Ana
    Gligoric, Goran
    Maluckov, Aleksandra
    Stepic, Milutin
    JOURNAL OF OPTICS, 2014, 16 (02)