Solvent Engineering for High-Performance n-Type Organic Electrochemical Transistors

被引:76
|
作者
Savva, Achilleas [1 ]
Ohayon, David [1 ]
Surgailis, Jokubas [1 ]
Paterson, Alexandra F. [1 ]
Hidalgo, Tania C. [1 ]
Chen, Xingxing [2 ]
Maria, Iuliana P. [3 ]
Paulsen, Bryan D. [4 ]
Petty, Anthony J., II [4 ]
Rivnay, Jonathan [4 ,5 ]
McCulloch, Iain [2 ,3 ]
Inal, Sahika [1 ]
机构
[1] KAUST, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] KAUST, Phys Sci & Engn Div, Solar Ctr, Thuwal 239556900, Saudi Arabia
[3] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[4] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[5] Northwestern Univ, Simpson Querrey Inst, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
bioelectronics; biosensors; n-type conjugated polymers; organic electrochemical transistors; solvent engineering; EFFICIENCY; REDUCTION; TRANSPORT; MOBILITY; MODE;
D O I
10.1002/aelm.201900249
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic electrochemical transistors (OECTs) exhibit strong potential for various applications in bioelectronics, especially as miniaturized, point-of-care biosensors, because of their efficient transducing ability. To date, however, the majority of reported OECTs have relied on p-type (hole transporting) polymer mixed conductors, due to the limited number of n-type (electron transporting) materials suitable for operation in aqueous electrolytes, and the low performance of those which exist. It is shown that a simple solvent-engineering approach boosts the performance of OECTs comprising an n-type, naphthalenediimide-based copolymer in the channel. The addition of acetone, a rather bad solvent for the copolymer, in the chloroform-based polymer solution leads to a three-fold increase in OECT transconductance, as a result of the simultaneous increase in volumetric capacitance and electron mobility in the channel. The enhanced electrochemical activity of the polymer film allows high-performance glucose sensors with a detection limit of 10 x 10(-6) m of glucose and a dynamic range of more than eight orders of magnitude. The approach proposed introduces a new tool for concurrently improving the conduction of ionic and electronic charge carriers in polymer mixed conductors, which can be utilized for a number of bioelectronic applications relying on efficient OECT operation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Defect Engineering for High-Performance n-Type PbSe Thermoelectrics
    Zhou, Chongjian
    Lee, Yong Kyu
    Cha, Joonil
    Yoo, Byeongjun
    Cho, Sung-Pyo
    Hyeon, Taeghwan
    Chung, In
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (29) : 9282 - 9290
  • [32] High-Performance Vertical Organic Electrochemical Transistors
    Donahue, Mary J.
    Williamson, Adam
    Strakosas, Xenofon
    Friedlein, Jacob T.
    McLeod, Robert R.
    Gleskova, Helena
    Malliaras, George G.
    ADVANCED MATERIALS, 2018, 30 (05)
  • [33] High-performance transparent inorganic-organic hybrid thin-film n-type transistors
    Wang, Lian
    Yoon, Myung-Han
    Lu, Gang
    Yang, Yu
    Facchetti, Antonio
    Marks, Tobin J.
    NATURE MATERIALS, 2006, 5 (11) : 893 - 900
  • [34] Erratum: High-performance transparent inorganic–organic hybrid thin-film n-type transistors
    Lian Wang
    Myung-Han Yoon
    Gang Lu
    Yu yang
    Antonio Facchetti
    Tobin J. Marks
    Nature Materials, 2007, 6 : 317 - 317
  • [35] Development of High-performance n-Type Organic Field-effect Transistors Based on Nitrogen Heterocycles
    Yamashita, Yoshiro
    CHEMISTRY LETTERS, 2009, 38 (09) : 870 - 875
  • [36] Molecular engineering accelerated polarity switching enabling high-performance n-type organic thermoelectrics
    Zhong, Fei
    Yin, Xiaojun
    Wu, Jiatao
    Gao, Chunmei
    Zhong, Cheng
    Wang, Lei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (35) : 18030 - 18037
  • [37] Salts as Additives: A Route to Improve Performance and Stability of n-Type Organic Electrochemical Transistors
    Ohayon, David
    Flagg, Lucas Q.
    Giugni, Andrea
    Wustoni, Shofarul
    Li, Ruipeng
    Castillo, Tania C. Hidalgo
    Emwas, Abdul-Hamid
    Sheelamanthula, Rajendar
    McCulloch, Iain
    Richter, Lee J.
    Inal, Sahika
    ACS MATERIALS AU, 2023, 3 (03): : 242 - 254
  • [38] Structural Modifications for Tuning Performance and Operational Modes in n-Type Organic Electrochemical Transistors
    Liu, Xinru
    Xiao, Yu
    Yan, Chaoyi
    Du, Pengcheng
    Zhang, Fengjiao
    Xin, Hanshen
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (05) : 8072 - 8083
  • [39] Erratum: N-type organic electrochemical transistors with stability in water
    Alexander Giovannitti
    Christian B. Nielsen
    Dan-Tiberiu Sbircea
    Sahika Inal
    Mary Donahue
    Muhammad R. Niazi
    David A. Hanifi
    Aram Amassian
    George G. Malliaras
    Jonathan Rivnay
    Iain McCulloch
    Nature Communications, 7
  • [40] Fullerene Active Layers for n-Type Organic Electrochemical Transistors
    Bischak, Connor G.
    Flagg, Lucas Q.
    Yan, Kangrong
    Li, Chang-Zhi
    Ginger, David S.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (31) : 28138 - 28144