A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem

被引:2
|
作者
Li, Lin [1 ]
Lu, Zuliang [1 ,2 ,3 ]
Zhang, Wei [4 ]
Huang, Fei [1 ]
Yang, Yin [5 ,6 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing, Peoples R China
[2] Chongqing Three Gorges Univ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin, Peoples R China
[4] Chongqing Three Gorges Univ, Chongqing Municipal Inst Higher Educ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[5] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[6] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2018年
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Optimal control problem; Nonlinear parabolic equations; Variational discretization; Spectral method; A posteriori error estimates; FINITE-ELEMENT METHODS; ELLIPTIC-EQUATIONS; APPROXIMATION;
D O I
10.1186/s13660-018-1729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L-2(H-1)-L-2 (L-2) a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L-2(L-2)-L-2(L-2) a posteriori error estimates of the approximation solutions for both the state and the control.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A priori error estimates of finite volume method for nonlinear optimal control problem
    Lu Z.
    Li L.
    Cao L.
    Hou C.
    Numerical Analysis and Applications, 2017, 10 (3) : 224 - 236
  • [32] A posteriori error estimates for an optimal control problem of laser surface hardening of steel
    Gupta, Nupur
    Nataraj, Neela
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (01) : 69 - 99
  • [33] A posteriori error estimates for an optimal control problem of laser surface hardening of steel
    Nupur Gupta
    Neela Nataraj
    Advances in Computational Mathematics, 2013, 39 : 69 - 99
  • [34] A posteriori error estimation for nonlinear parabolic boundary control
    Kammann, Eileen
    Troeltzsch, Fredi
    2011 16TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, 2011, : 80 - 83
  • [35] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [36] A Posteriori Error Estimates for a Semidiscrete Parabolic Integrodifferential Control on Multimeshes
    Shen, Wanfang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [37] A posteriori error estimates of finite element method for parabolic problems
    Chen, YP
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (04) : 449 - 456
  • [38] A Posteriori Error Estimates for Parabolic Optimal Control Problems with Controls Acting on Lower Dimensional Manifolds
    Ram Manohar
    Rajen Kumar Sinha
    Journal of Scientific Computing, 2021, 89
  • [39] A Posteriori Error Estimates for Parabolic Optimal Control Problems with Controls Acting on Lower Dimensional Manifolds
    Manohar, Ram
    Sinha, Rajen Kumar
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [40] ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Manohar, Ram
    Sinha, Rajen Kumar
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (02): : 147 - 176