Highly efficient oxidative-alkaline-leaching process of vanadium-chromium reducing residue and parameters optimization by response surface methodology

被引:8
|
作者
Peng, Hao [1 ]
Shang, Qian [1 ]
Chen, Ronghua [1 ]
Zhang, Liuying [1 ]
Chen, Ya [1 ]
Guo, Jing [1 ]
机构
[1] Yangtze Normal Univ, Coll Chem & Chem Engn, Chongqing Key Lab Inorgan Special Funct Mat, Chongqing 408100, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxidative-alkaline-leaching; response surface methodology; vanadium; SLAG; SEPARATION; RECOVERY; EXTRACTION; KINETICS; REMOVAL; WATER; TECHNOLOGY; ACTIVATION; TITANIUM;
D O I
10.1080/09593330.2020.1869317
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vanadium-chromium reducing residue was not only a typical solid waste in the steel industry but also a valuable secondary source for recovery of vanadium and chromium. A highly efficient oxidative-alkaline-leaching technology with Na2S2O8 was applied in this work. The effect of experimental factors including m(NaOH)/m(Residue), liquid-to-solid ratio, reaction temperature, m(Na2S2O8)/m(Residue) and reaction time, on the leaching process were investigated. It was showed that 96.3% vanadium was leached out under selected conditions: m(NaOH)/m(Residue) = 0.30, liquid-to-solid ratio of 5 mL/g, reaction time of 60 min, m(Na2S2O8)/m(Residue) = 0.50, reaction temperature of 90 degrees C and stirring rate at 500 rpm, respectively. The leaching kinetics behaviour analysis demonstrated that the controlling step of the reaction was the diffusion of residue through the liquid film, and the Ea for vanadium leaching out was calculated to 15.57 kJ/mol. Response surface methodology was applied to analyze the interaction of the main conditions and the results showed that the influence of experimental factors on the leaching efficiency of vanadium followed the order: m(NaOH)/m(Residue) (B) > m(Na2S2O8)/m(Residue) (C) > reaction temperature (E) > reaction time (D) > liquid-to-solid ratio (A).
引用
收藏
页码:2167 / 2176
页数:10
相关论文
共 50 条
  • [21] Efficient reduction of vanadium (V) with biochar and experimental parameters optimized by response surface methodology
    Peng, Hao
    Wang, Laixin
    Guo, Jing
    Wu, Yuting
    Li, Bing
    Lin, Yinhe
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [22] Optimization of process parameters for kitchen waste composting by response surface methodology
    M. K. Iqbal
    A. Nadeem
    F. Sherazi
    R. A. Khan
    International Journal of Environmental Science and Technology, 2015, 12 : 1759 - 1768
  • [23] Optimization of the Parameters of the Magnetic Filtration Process Using Response Surface Methodology
    Yildiz, Zehra
    TRANSPORT IN POROUS MEDIA, 2011, 90 (03) : 965 - 975
  • [24] Optimization of inulin production process parameters using response surface methodology
    Akram, Wasim
    Garud, Navneet
    FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 6 (01)
  • [25] Optimization of inulin production process parameters using response surface methodology
    Wasim Akram
    Navneet Garud
    Future Journal of Pharmaceutical Sciences, 6
  • [26] Optimization of process parameters for kitchen waste composting by response surface methodology
    Iqbal, M. K.
    Nadeem, A.
    Sherazi, F.
    Khan, R. A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2015, 12 (05) : 1759 - 1768
  • [27] Optimization of the Parameters of the Magnetic Filtration Process Using Response Surface Methodology
    Zehra Yildiz
    Transport in Porous Media, 2011, 90 : 965 - 975
  • [28] Optimization of vibratory welding process parameters using response surface methodology
    Singh, Pravin Kumar
    Kumar, S. Deepak
    Patel, D.
    Prasad, S. B.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (05) : 2487 - 2495
  • [29] Optimization of vibratory welding process parameters using response surface methodology
    Pravin Kumar Singh
    S. Deepak Kumar
    D. Patel
    S. B. Prasad
    Journal of Mechanical Science and Technology, 2017, 31 : 2487 - 2495
  • [30] Optimization of A-TIG process parameters using response surface methodology
    Vidyarthy, Ravi Shanker
    Dwivedi, Dheerendra Kumar
    Muthukumaran, Vasudevan
    MATERIALS AND MANUFACTURING PROCESSES, 2018, 33 (07) : 709 - 717