Judging the quality of gene expression-based clustering methods using gene annotation

被引:220
|
作者
Gibbons, FD [1 ]
Roth, FP [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1101/gr.397002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We compare several commonly used expression-based gene clustering algorithms using a figure of merit based on the mutual information between cluster membership and known gene attributes. By studying various publicly available expression data sets we conclude that enrichment of clusters for biological function is, in general, highest at rather low cluster numbers. As a measure of dissimilarity between the expression patterns of two genes, no method outperforms Euclidean distance for ratio-based measurements, or Pearson distance for non-ratio-based measurements at the optimal choice of cluster number. We show the self-organized-map approach to be best for both measurement types at higher numbers of clusters. Clusters of genes derived from single- and average-linkage hierarchical clustering tend to produce worse-than-random results.
引用
收藏
页码:1574 / 1581
页数:8
相关论文
共 50 条
  • [21] Interspecies applications of gene expression-based prediction of chemosensitivity
    Fowles, Jared S.
    Hess, Ann M.
    Duval, Dawn L.
    Thamm, Douglas H.
    Gustafson, Daniel L.
    MOLECULAR CANCER RESEARCH, 2014, 12
  • [22] Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
    Albaradei, Somayah
    Uludag, Mahmut
    Thafar, Maha A.
    Gojobori, Takashi
    Essack, Magbubah
    Gao, Xin
    FRONTIERS IN GENETICS, 2021, 12
  • [23] On uility of gene set signatures in gene expression-based cancer class prediction
    Mramor, Minca
    Toplak, Marko
    Leban, Gregor
    Curk, Tomaz
    Demsar, Janez
    Zupan, Blaz
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MACHINE LEARNING IN SYSTEMS BIOLOGY, 2010, 8 : 55 - 64
  • [24] Gene expression-based collaborative designer selection and optimization
    Wang, Weili
    Yang, Yu
    Liang, Xuedong
    Wang, Jing
    PROCEEDINGS OF THE 2008 12TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, VOLS I AND II, 2008, : 212 - 216
  • [25] Prognostic Impact of Gene Expression-Based Classification for Neuroblastoma
    Oberthuer, Andre
    Hero, Barbara
    Berthold, Frank
    Juraeva, Dilafruz
    Faldum, Andreas
    Kahlert, Yvonne
    Asgharzadeh, Shahab
    Seeger, Robert
    Scaruffi, Paola
    Tonini, Gian Paolo
    Janoueix-Lerosey, Isabelle
    Delattre, Olivier
    Schleiermacher, Gudrun
    Vandesompele, Jo
    Vermeulen, Joelle
    Speleman, Frank
    Noguera, Rosa
    Piqueras, Marta
    Benard, Jean
    Valent, Alexander
    Avigad, Smadar
    Yaniv, Isaac
    Weber, Axel
    Christiansen, Holger
    Grundy, Richard G.
    Schardt, Katharina
    Schwab, Manfred
    Eils, Roland
    Warnat, Patrick
    Kaderali, Lars
    Simon, Thorsten
    DeCarolis, Boris
    Theissen, Jessica
    Westermann, Frank
    Brors, Benedikt
    Fischer, Matthias
    JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (21) : 3506 - 3515
  • [26] Gene expression-based screening for inhibitors of PDGFR signaling
    Alena A Antipova
    Brent R Stockwell
    Todd R Golub
    Genome Biology, 9
  • [27] Gene expression-based cross species tissue mapping
    不详
    BMC BIOINFORMATICS, 2005, 6
  • [28] Gene expression-based clinical predictions in lung adenocarcinoma
    Xiong, Yanlu
    Lei, Jie
    Zhao, Jinbo
    Feng, Yangbo
    Qiao, Tianyun
    Zhou, Yongsheng
    Jiang, Tao
    Han, Yong
    AGING-US, 2020, 12 (15): : 15492 - 15503
  • [29] Gene expression-based screening for inhibitors of PDGFR signaling
    Antipova, Alena A.
    Stockwell, Brent R.
    Golub, Todd R.
    GENOME BIOLOGY, 2008, 9 (03)
  • [30] On Quality of Different Annotation Sources for Gene Expression Analysis
    Mulas, Francesca
    Curk, Tomaz
    Bellazzi, Riccardo
    Zupan, Blaz
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PROCEEDINGS, 2009, 5651 : 421 - +