CONTEXT-DRIVEN ONTOLOGICAL ANNOTATIONS IN DICOM IMAGES Towards Semantic PACS

被引:0
|
作者
Moeller, Manuel [1 ]
Mukherjee, Saikat [2 ]
机构
[1] German Res Ctr Artificial Intelligence, Kaiserslautern, Germany
[2] Siemens Corp Res, Princeton, NJ USA
关键词
Semantic Search; Medical Image Retrieval; Semantic PACS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The enormous volume of medical images and the complexity of clinical information systems make searching for relevant images a challenging task. We describe techniques for annotating and searching medical images using ontological semantic concepts. In contrast to extant multimedia semantic annotation work, our technique uses the context from mappings between multiple ontologies to constrain the semantic space and quickly identify relevant concepts. We have implemented a system using the FMA and RadLex anatomical ontologies, the ICD disease taxonomy, and have coupled the techniques with the DICOM standard for easy deployment in current PAC environments. Preliminary quantitative and qualitative experiments validate the effectiveness of the techniques.
引用
收藏
页码:294 / +
页数:2
相关论文
共 21 条
  • [21] Increasing sorghum yields for smallholder farmers in Mali: the evolution towards a context-driven, on-farm, gender-responsive sorghum breeding program
    Isaacs, Krista
    Weltzien, Eva
    Some, Hermann
    Diallo, Abdoulaye
    Diallo, Bocar
    Sidibe, Mamourou
    vom Brocke, Kirsten
    Samake, Bakary
    Nebie, Baloua
    Rattunde, Fred W.
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2024, 8