Universal Bernoulli polynomials and P-adic congruences

被引:0
|
作者
Adelberg, A [1 ]
机构
[1] Grinnell Coll, Dept Math, Grinnell, IA 50112 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] P-ADIC CONGRUENCES BETWEEN BINOMIAL COEFFICIENTS
    GIAMBALVO, V
    MINES, R
    PENGELLEY, DJ
    FIBONACCI QUARTERLY, 1991, 29 (02): : 114 - 119
  • [22] SOME PROPERTIES OF BERNOULLI AND EULER POLYNOMIALS ARISING FROM THE p-ADIC INTEGRAL ON Zp
    Kim, D. S.
    Kim, T.
    Lee, S. H.
    Dolgy, D. V.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 471 - 480
  • [23] A note on degenerate Bernoulli numbers and polynomials associated with p-adic invariant integral on Zp
    Kim, Dae San
    Kim, Taekyun
    Dolgy, Dmitry V.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 198 - 204
  • [24] SOME PROPERTIES ON THE p-ADIC INVARIANT INTEGRAL ON Zp ASSOCIATED WITH GENOCCHI AND BERNOULLI POLYNOMIALS
    Kim, Taekyun
    Jang, Lee-Chae
    Kim, Young-Hee
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (07) : 1201 - 1207
  • [25] Some Properties and Identities of Bernoulli and Euler Polynomials Associated with p-adic Integral on Zp
    Kim, D. S.
    Kim, T.
    Dolgy, D. V.
    Lee, S. H.
    Rim, S. -H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [26] BERNOULLI NUMBERS AND L P-ADIC FUNCTIONS
    FRESNEL, J
    ANNALES DE L INSTITUT FOURIER, 1967, 17 (02) : 281 - &
  • [27] Zeros of p-Adic Differential Polynomials
    Escassut, A.
    Lu, W.
    Yang, C. C.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2014, 6 (02) : 166 - 170
  • [28] p-Adic Roots of Chromatic Polynomials
    Paul Buckingham
    Graphs and Combinatorics, 2020, 36 : 1111 - 1130
  • [29] ZEROS OF P-ADIC EXPONENTIAL POLYNOMIALS
    VANDERPOORTEN, AJ
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1976, 79 (01): : 46 - 49
  • [30] p-Adic Roots of Chromatic Polynomials
    Buckingham, Paul
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1111 - 1130