Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations

被引:29
|
作者
Cirillo, Emilio N. M. [1 ]
Nardi, Francesca R. [2 ]
Sohier, Julien [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, Italy
[2] Tech Univ Eindhoven, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Stochastic dynamics; Irreversible Markov chains; Hitting times; Metastability; Freidlin Wentzell dynamics; MARKOV-CHAINS; STOCHASTIC DYNAMICS; KAWASAKI DYNAMICS; EXIT PROBLEM; PROBABILITIES; EVENTS; DOMAIN;
D O I
10.1007/s10955-015-1334-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.
引用
收藏
页码:365 / 403
页数:39
相关论文
共 50 条
  • [31] New Insights on Critical Transitions of Single-Neuron Dynamics
    He, H.
    Zhang, K.
    Yan, H.
    Wang, J.
    ACTA PHYSICA POLONICA A, 2024, 146 (01) : 102 - 120
  • [32] Critical dynamics at incommensurate phase transitions and NMR relaxation experiments
    Kaufmann, BA
    Schwabl, F
    Täuber, UC
    PHYSICAL REVIEW B, 1999, 59 (17): : 11226 - 11243
  • [33] CRITICAL DYNAMICS OF A MODEL FOR DISTORTIVE STRUCTURAL PHASE-TRANSITIONS
    SCHNEIDER, T
    SIMANEK, E
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (11): : 1633 - 1636
  • [34] Early warning signals of complex critical transitions in deterministic dynamics
    Evers, Kyra
    Borsboom, Denny
    Fried, Eiko I.
    Hasselman, Fred
    Waldorp, Lourens
    NONLINEAR DYNAMICS, 2024, 112 (21) : 19071 - 19094
  • [35] UNDERSTANDING THE DYNAMICS OF CRITICAL TRANSITIONS IN A CONTRA-ROTATING FAN
    Payyappalli, Manas Madasseri
    Pradeep, A. M.
    PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 2D, 2021,
  • [36] Critical dynamics near order-disorder phase transitions
    Sazonov, SV
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1996, 22 (21): : 52 - 56
  • [37] Short-time critical dynamics
    Schülke, L
    NON-PERTUBATIVE METHODS AND LATTICE QCD, 2001, : 252 - 260
  • [38] TIME SCALE RATIOS AND CRITICAL DYNAMICS
    Folk, R.
    PATH INTEGRALS: NEW TRENDS AND PERSPECTIVES, PROCEEDINGS, 2008, : 271 - 276
  • [39] Escape probability, mean residence time and geophysical fluid particle dynamics
    Brannan, JR
    Duan, JQ
    Ervin, VJ
    PHYSICA D, 1999, 133 (1-4): : 23 - 33
  • [40] Escape probability, mean residence time and geophysical fluid particle dynamics
    Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, United States
    Phys D Nonlinear Phenom, 1-4 (23-33):