Complex version KdV equation and the periods solution

被引:11
|
作者
Yang, L [1 ]
Yang, KQ [1 ]
Luo, HG [1 ]
机构
[1] Lanzhou Univ, Dept Phys, Lanzhou 730000, Gansu, Peoples R China
关键词
D O I
10.1016/S0375-9601(00)00128-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, the complex version of the KdV equation is discussed. The corresponding coupled equations are an integrable system in the sense of the bi-Hamiltonian structure, so the complex version KdV equation is integrable. A new spectral form is given and the periodic solution of the complex KdV equation is obtained. It is showed that the periodic solution is the classical solution. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:331 / 334
页数:4
相关论文
共 50 条
  • [41] Homotopic mapping solution of soliton for perturbed KdV equation
    Mo Jia-Qi
    Yao Jing-Sun
    ACTA PHYSICA SINICA, 2008, 57 (12) : 7419 - 7422
  • [42] A PERIODIC-SOLUTION OF KDV EQUATION IN VIRASORO ALGEBRA
    YANG, KQ
    CHINESE PHYSICS LETTERS, 1995, 12 (02): : 65 - 67
  • [43] Perturbation of the two-soliton solution to the KdV equation
    L. A. Kalyakin
    V. A. Lazarev
    Theoretical and Mathematical Physics, 1997, 112 : 866 - 874
  • [44] Low regularity solution for a nonlocal perturbation of KdV equation
    Huo, Zhaohui
    Jia, Yueling
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (04): : 634 - 646
  • [45] The Study of the Solution to a Generalized KdV-mKdV Equation
    Lv, Xiumei
    Shao, Tengwei
    Chen, Jiacheng
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [46] Coupled KdV equation: similarity reduction and analytical solution
    Cheng Xue-Ping
    Li Jin-Yu
    Xue Jiang-Rong
    ACTA PHYSICA SINICA, 2011, 60 (11)
  • [47] A note on the exact solution of the special modified KDV equation
    Wang, Honglei
    Xiang, Chunhuan
    MODERN PHYSICS LETTERS B, 2008, 22 (04): : 289 - 293
  • [48] Low regularity solution for a nonlocal perturbation of KdV equation
    Zhaohui Huo
    Yueling Jia
    Zeitschrift für angewandte Mathematik und Physik, 2008, 59 : 634 - 646
  • [49] Numerical solution of the KdV equation by Haar wavelet method
    Oruc, O.
    Bulut, F.
    Esen, A.
    PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (06):
  • [50] A travelling wave solution to the KdV-Burgers equation
    Demiray, H
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) : 665 - 670