Robust Correction of Spike Noise: Application to Diffusion Tensor Imaging

被引:16
|
作者
Chavez, S. [1 ]
Storey, P. [2 ]
Graham, S. J. [3 ,4 ]
机构
[1] Sunnybrook Hlth Sci Ctr, Toronto, ON M4N 3M5, Canada
[2] NYU, Dept Radiol, Sch Med, New York, NY 10016 USA
[3] Univ Toronto, Rotman Res Inst, Baycrest Ctr Geriatr Care, Toronto, ON M5S 1A1, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada
关键词
diffusion tensor imaging; spike noise; outlier detection; ripple artifact; ECHO; IMAGES; MRI;
D O I
10.1002/mrm.22019
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Echo-planar imaging (EPI)-based diffusion tensor imaging (DTI) is particularly prone to spike noise. However, existing spike noise correction methods are impractical for corrupted DTI data because the methods correct the complex MRI signal, which is not usually stored on clinical MRI systems. The present work describes a novel Outlier Detection De-spiking technique (ODD) that consists of three steps: detection, localization, and correction. Using automated outlier detection schemes, ODD exploits the data redundancy available in DTI data sets that are acquired with a minimum of six different diffusion-weighted images (DWIs) with similar signal and noise properties. A mathematical formulation, describing the effects of spike noise on magnitude images, yields appropriate measures for an outlier detection scheme used for spike detection while a normalization-dependent outlier detection scheme is used for spike localization. ODD performs accurately on diverse DTI data sets corrupted by spike noise and can be used for automated control of DTI data quality. ODD can also be extended to other MRI applications with data redundancy, such as dynamic imaging and functional MRI. Magn Reson Med 62:510-519, 2009. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:510 / 519
页数:10
相关论文
共 50 条
  • [31] APPLICATION OF DIFFUSION TENSOR IMAGING IN MODELING DIFFUSE AXONAL INJURY
    Wright, Rika M.
    Ramesh, K. T.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2009, PT A AND B, 2009, : 367 - 368
  • [32] Pediatric diffusion and diffusion tensor imaging
    Glasier, Charles M.
    PEDIATRIC RADIOLOGY, 2007, 37 (08) : 733 - 733
  • [33] Pediatric diffusion and diffusion tensor imaging
    Charles M. Glasier
    Pediatric Radiology, 2007, 37 : 733 - 733
  • [34] Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization
    Kingsley, PB
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2006, 28A (02) : 155 - 179
  • [35] Diffusion-Weighted Imaging and Diffusion Tensor Imaging
    Raya J.G.
    Current Radiology Reports, 2 (3)
  • [36] Application of Diffusion Weighted Imaging and Diffusion Tensor Imaging in the Pretreatment and Post-treatment of Brain Tumor
    Hu, Ranliang
    Hoch, Michael J.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (03) : 335 - 347
  • [37] Diffusion tensor imaging in spinal pathology: A robust investigative tool in clinical practice
    Kanna, Rishi M.
    Rajasekaran, S.
    NEUROLOGY INDIA, 2017, 65 (05) : 964 - 965
  • [38] Outlier detection in cardiac diffusion tensor imaging: Shot rejection or robust fitting?
    Coveney, Sam
    Afzali, Maryam
    Mueller, Lars
    Teh, Irvin
    Das, Arka
    Dall'Armellina, Erica
    Szczepankiewicz, Filip
    Jones, Derek K.
    Schneider, Jurgen E.
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [39] The effects of noise in cardiac diffusion tensor imaging and the benefits of averaging complex data
    Scott, Andrew D.
    Nielles-Vallespin, Sonia
    Ferreira, Pedro F.
    McGill, Laura-Ann
    Pennell, Dudley J.
    Firmin, David N.
    NMR IN BIOMEDICINE, 2016, 29 (05) : 588 - 599
  • [40] Random noise in diffusion tensor imaging, its destructive impact and some corrections
    Hahn, KR
    Prigarin, S
    Heim, S
    Hasan, K
    VISUALIZATION AND PROCESSING OF TENSOR FIELDS, 2006, : 107 - +