Robust Correction of Spike Noise: Application to Diffusion Tensor Imaging

被引:16
|
作者
Chavez, S. [1 ]
Storey, P. [2 ]
Graham, S. J. [3 ,4 ]
机构
[1] Sunnybrook Hlth Sci Ctr, Toronto, ON M4N 3M5, Canada
[2] NYU, Dept Radiol, Sch Med, New York, NY 10016 USA
[3] Univ Toronto, Rotman Res Inst, Baycrest Ctr Geriatr Care, Toronto, ON M5S 1A1, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada
关键词
diffusion tensor imaging; spike noise; outlier detection; ripple artifact; ECHO; IMAGES; MRI;
D O I
10.1002/mrm.22019
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Echo-planar imaging (EPI)-based diffusion tensor imaging (DTI) is particularly prone to spike noise. However, existing spike noise correction methods are impractical for corrupted DTI data because the methods correct the complex MRI signal, which is not usually stored on clinical MRI systems. The present work describes a novel Outlier Detection De-spiking technique (ODD) that consists of three steps: detection, localization, and correction. Using automated outlier detection schemes, ODD exploits the data redundancy available in DTI data sets that are acquired with a minimum of six different diffusion-weighted images (DWIs) with similar signal and noise properties. A mathematical formulation, describing the effects of spike noise on magnitude images, yields appropriate measures for an outlier detection scheme used for spike detection while a normalization-dependent outlier detection scheme is used for spike localization. ODD performs accurately on diverse DTI data sets corrupted by spike noise and can be used for automated control of DTI data quality. ODD can also be extended to other MRI applications with data redundancy, such as dynamic imaging and functional MRI. Magn Reson Med 62:510-519, 2009. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:510 / 519
页数:10
相关论文
共 50 条
  • [1] Distortion correction and robust tensor estimation for MR diffusion imaging
    Mangin, JF
    Poupon, C
    Clark, C
    Le Bihan, D
    Bloch, I
    MEDICAL IMAGE ANALYSIS, 2002, 6 (03) : 191 - 198
  • [2] Robust tensor estimation in diffusion tensor imaging
    Maximov, Ivan I.
    Grinberg, Farida
    Shah, N. Jon
    JOURNAL OF MAGNETIC RESONANCE, 2011, 213 (01) : 136 - 144
  • [3] Estimation and application of spatially variable noise fields in diffusion tensor imaging
    Landman, Bennett A.
    Bazin, Pierre-Louis
    Prince, Jerry L.
    MAGNETIC RESONANCE IMAGING, 2009, 27 (06) : 741 - 751
  • [4] Application of diffusion tensor imaging in neurosurgery
    Saur, Ralf
    Gharabaghi, Alireza
    Erb, Michael
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2007, 17 (04): : 258 - 265
  • [5] A Robust Fiber Tracking Method in Diffusion Tensor Imaging
    Song, Lifeng
    Chen, Zikuan
    Xing, Wei
    APCMBE 2008: 7TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, 2008, 19 : 237 - +
  • [6] Noise removal in magnetic resonance diffusion tensor imaging
    Chen, B
    Hsu, EW
    MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (02) : 393 - 401
  • [7] Theoretical analysis of the effects of noise on diffusion tensor imaging
    Anderson, AW
    MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (06) : 1174 - 1188
  • [8] A novel diffusion system for impulse noise removal based on a robust diffusion tensor
    Tian, Haiying
    Cai, Hongmin
    Lai, Jianhuang
    NEUROCOMPUTING, 2014, 133 : 222 - 230
  • [9] Image registration for distortion correction in diffusion tensor imaging
    Netsch, T
    van Muiswinkel, A
    BIOMEDICAL IMAGE REGISTRATION, 2003, 2717 : 171 - 180
  • [10] Application of Diffusion Tensor Imaging in Obstructive Nephropathy
    Xu, Hua-Jian
    Zhang, Hanwen
    Yu, Juan
    Lin, Fan
    Lei, Yi
    IRANIAN JOURNAL OF RADIOLOGY, 2021, 18 (03)