Poisson equation, moment inequalities and quick convergence for Markov random walks

被引:14
|
作者
Fuh, CD [1 ]
Zhang, CH
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Rutgers State Univ, Hill Ctr, Dept Stat, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
inequality; Markov random walk; tail probability; moment; Poisson equation; quick convergence; Wald equation; renewal theory;
D O I
10.1016/S0304-4149(99)00104-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide moment inequalities and sufficient conditions for the quick convergence for Markov random walks, without the assumption of uniform ergodicity for the underlying Markov chain. Our approach is based on martingales associated with the Poisson equation and Wald equations for the second moment with a variance formula. These results are applied to nonlinear renewal theory for Markov random walks. A random coefficient autoregression model is investigated as an example. (C) 2000 Elsevier Science B.V. All rights reserved. MSC: primary 60G40; secondary 60J10.
引用
收藏
页码:53 / 67
页数:15
相关论文
共 50 条
  • [21] An arcsine law for Markov random walks
    Alsmeyer, Gerold
    Buckmann, Fabian
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (01) : 223 - 239
  • [22] Entropy inequalities for random walks and permutations
    Bristiel, Alexandre
    Caputo, Pietro
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 54 - 81
  • [23] Fluctuation Theory for Markov Random Walks
    Alsmeyer, Gerold
    Buckmann, Fabian
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 2266 - 2342
  • [24] Moment asymptotics for branching random walks in random environment
    Guen, Onur
    Koenig, Wolfgang
    Sekulovic, Ozren
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
  • [26] On the convergence of Markov binomial to Poisson distribution
    Cekanavicius, V
    STATISTICS & PROBABILITY LETTERS, 2002, 58 (01) : 83 - 91
  • [27] Random walks in random environment with Markov dependence on time
    Boldrighini, C.
    Minlos, R. A.
    Pellegrinotti, A.
    CONDENSED MATTER PHYSICS, 2008, 11 (02) : 209 - 221
  • [28] Convergence of quantum random walks with decoherence
    Fan, Shimao
    Feng, Zhiyong
    Xiong, Sheng
    Yang, Wei-Shih
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [29] On convergence of random walks on moduli space
    Prohaska, Roland
    ILLINOIS JOURNAL OF MATHEMATICS, 2021, 65 (03) : 735 - 747
  • [30] The Poisson boundary of lamplighter random walks on trees
    Karlsson, Anders
    Woess, Wolfgang
    GEOMETRIAE DEDICATA, 2007, 124 (01) : 95 - 107