Boundary layer theory for convection-diffusion equations in a circle

被引:7
|
作者
Jung, C. -Y. [1 ]
Temam, R. [2 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Nat Sci, Ulsan, South Korea
[2] Indiana Univ, Inst Sci Comp & Appl Math, Bloomington, IN 47405 USA
基金
新加坡国家研究基金会;
关键词
boundary layers; singular perturbations; characteristic points; convection-dominated problems; parabolic boundary layers; NAVIER-STOKES EQUATIONS; ASYMPTOTIC ANALYSIS;
D O I
10.1070/RM2014v069n03ABEH004898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to boundary layer theory for singularly perturbed convection-diffusion equations in the unit circle. Two characteristic points appear, (+/- 1, 0), in the context of the equations considered here, and singularities may occur at these points depending on the behaviour there of a given function f, namely, the flatness or compatibility of f at these points as explained below. Two previous articles addressed two particular cases: [24] dealt with the case where the function f is sufficiently flat at the characteristic points, the so-called compatible case; [25] dealt with a generic non-compatible case (f polynomial). This survey article recalls the essential results from those papers, and continues with the general case (f non-flat and non-polynomial) for which new specific boundary layer functions of parabolic type are introduced in addition.
引用
收藏
页码:435 / 480
页数:46
相关论文
共 50 条
  • [31] Asymptotic profiles for convection-diffusion equations with variable diffusion
    Duro, G
    Carpio, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (04) : 407 - 433
  • [32] Using rectangular Qp elements in the SDFEM for a convection-diffusion problem with a boundary layer
    Stynes, Martin
    Tobiska, Lutz
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (12) : 1789 - 1802
  • [33] A Novel Numerical Approach for Solving Convection-Diffusion Problem with Boundary Layer Behavior
    Cakir, Musa
    Masiha, R. Younis
    Arslan, Derya
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2020, 33 (01): : 152 - 166
  • [34] Boundary knot method for convection-diffusion problems
    Muzik, Juraj
    XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 : 582 - 588
  • [35] Generalized trapezoidal formulas for convection-diffusion equations
    Chawla, M.M.
    Al-Zanaidi, M.A.
    Evans, D.J.
    International Journal of Computer Mathematics, 1999, 72 (2-4): : 141 - 154
  • [36] LINEARLY IMPLICIT SCHEMES FOR CONVECTION-DIFFUSION EQUATIONS
    Cavalli, Fausto
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 423 - 430
  • [37] A MORE ACCURATE ALGORITHM OF CONVECTION-DIFFUSION EQUATIONS
    LUO, ZO
    CHINESE SCIENCE BULLETIN, 1990, 35 (17): : 1485 - 1488
  • [38] On the dynamics of some discretisations of convection-diffusion equations
    Sweby, PK
    Yee, HC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 553 - 554
  • [39] SOME INVERSE PROBLEMS FOR CONVECTION-DIFFUSION EQUATIONS
    Pyatkov, S. G.
    Safonov, E. I.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (04): : 36 - 50
  • [40] A New Method for Solving Convection-Diffusion Equations
    Liao, Wenyuan
    Zhu, Jianping
    CSE 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, 2008, : 107 - +