Truncated covariance matrices and Toeplitz methods in Gaussian processes

被引:0
|
作者
Storkey, AJ [1 ]
机构
[1] Univ Edinburgh, Div Informat, Inst Adapt & Neural Computat, Edinburgh EH8 9YL, Midlothian, Scotland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian processes are a limit extension of neural networks. Standard Gaussian process techniques use a squared exponential covariance function. Here, the use of truncated covariances is proposed. Such covariances have compact support. Their use speeds up matrix inversion and increases precision. Furthermore they allow the use of speedy, memory efficient Toeplitz inversion for high dimensional grid based Gaussian process predictors.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 50 条