Intrusion Detection System Based on Machine and Deep Learning Models: A Comparative and Exhaustive Study

被引:0
|
作者
Pandey, Hemlatha [1 ]
Karnavat, Tejal Lalitkumar [1 ]
Sandilya, Mandadapu Naga Sai [1 ]
Katiyar, Shashwat [1 ]
Rathore, Hemant [1 ]
机构
[1] BITS Pilani, Dept CS & IS, KK Birla Goa Campus, Sancoale, Goa, India
来源
关键词
Anomaly detection; CIC-IDS2017; Convolutional Neural Network; Deep Neural Network; KDDCup; 99; Long Short Term Memory; Machine learning;
D O I
10.1007/978-3-030-96305-7_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network Intrusion Detection System plays a central role in detecting various security breaches and cyber attacks on a network. Literature suggests that machine learning techniques can successfully be used for intrusion detection, but there are many open challenges in the domain. In this paper, we performed multi-class classification for intrusion detection using different machine and deep learning techniques on four publicly available datasets. Our work focuses on evaluating the performance of the different intrusion detection models and achieving a better detection rate. Our experimental results show that hybrid CNN-LSTM and kNN models achieved an accuracy above 99% on KDDCup 99, CIC-IDS2017, and Bot-IoT datasets. These models also attain a detection rate of more than 0.9 for the DoS & DDoS attacks and an average FPR of less than 0.1 across all four datasets.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 50 条
  • [41] A Comparative Study of Using Deep Learning Algorithms in Network Intrusion Detection
    Elsayed, Salwa
    Mohamed, Khalil
    Madkour, Mohamed Ashraf
    IEEE ACCESS, 2024, 12 : 58851 - 58870
  • [42] An intrusion detection system for health-care system using machine and deep learning
    Pande, Sagar
    Khamparia, Aditya
    Gupta, Deepak
    WORLD JOURNAL OF ENGINEERING, 2022, 19 (02) : 166 - 174
  • [43] IDSDL: a sensitive intrusion detection system based on deep learning
    Yanjun Hu
    Fan Bai
    Xuemiao Yang
    Yafeng Liu
    EURASIP Journal on Wireless Communications and Networking, 2021
  • [44] Toward Deep Learning based Intrusion Detection System: A Survey
    Li, Zhiqi
    Fang, Weidong
    Zhu, Chunsheng
    Song, Guannan
    Zhang, Wuxiong
    PROCEEDINGS OF THE 2024 6TH INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING, BDE 2024, 2024, : 25 - 32
  • [45] Hybrid optimization and deep learning based intrusion detection system
    Gupta, Subham Kumar
    Tripathi, Meenakshi
    Grover, Jyoti
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [46] A Stratified IoT Deep Learning based Intrusion Detection System
    Idrissi, Idriss
    Azizi, Mostafa
    Moussaoui, Omar
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 808 - 815
  • [47] A network intrusion detection system based on deep learning in the IoT
    Wang, Xiao
    Dai, Lie
    Yang, Guang
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 24520 - 24558
  • [48] A novel scalable intrusion detection system based on deep learning
    Mighan, Soosan Naderi
    Kahani, Mohsen
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2021, 20 (03) : 387 - 403
  • [49] IDSDL: a sensitive intrusion detection system based on deep learning
    Hu, Yanjun
    Bai, Fan
    Yang, Xuemiao
    Liu, Yafeng
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [50] A novel scalable intrusion detection system based on deep learning
    Soosan Naderi Mighan
    Mohsen Kahani
    International Journal of Information Security, 2021, 20 : 387 - 403