Optimal control of distributed arrays with spatial invariance

被引:0
|
作者
Bamieh, B [1 ]
Paganini, F
Dahleh, M
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[3] MIT, Cambridge, MA 02139 USA
来源
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider distributed parameter systems where the underlying dynamics are spatially invariant, and where the controls and measurements are spatially distributed. These systems arise in many applications such as the control of platoons, smart structures, or distributed flow control through the fluid boundary. For optimal control problems involving quadratic criteria such as LQR, H-2 and H-infinity, it is shown how to reduce the optimization to a family of problems over spatial frequency. We also show that optimal controllers have an inherent degree of decentralization, which leads to a practical distributed architecture. Under a more general class of performance criteria, a general result is given showing that optimal controllers inherit the spatial invariance structure of the plant.
引用
收藏
页码:329 / 343
页数:15
相关论文
共 50 条
  • [21] Source localization with distributed sensor arrays and partial spatial coherence
    Kozick, RJ
    Sadler, BM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (03) : 601 - 616
  • [22] Source localization with distributed sensor arrays and partial spatial coherence
    Kozick, RJ
    Sadler, BM
    UNATTENDED GROUND SENSOR TECHNOLOGIES AND APPLICATIONS II, 2000, 4040 : 142 - 153
  • [23] SPATIAL COHERENCE MODEL FOR PASSIVE RANGING USING DISTRIBUTED ARRAYS
    Ge, Hongya
    Kirsteins, Ivars P.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 243 - 247
  • [24] A Counterexample in Distributed Optimal Sensing and Control
    Yuksel, Serdar
    Tatikonda, Sekhar
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) : 841 - 844
  • [25] THE OPTIMAL CONTROL OF SYSTEMS WITH DISTRIBUTED PARAMETERS
    BUTKOVSKII, AG
    LERNER, AJ
    DOKLADY AKADEMII NAUK SSSR, 1960, 134 (04): : 778 - 781
  • [26] Optimal Distributed Nonlinear Battery Control
    Akyurek, Alper Sinan
    Rosing, Tajana Simunic
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2017, 5 (03) : 1045 - 1054
  • [27] OPTIMAL CONTROL OF SYSTEMS WITH DISTRIBUTED PARAMETERS
    PLOTNIKOV, VI
    DOKLADY AKADEMII NAUK SSSR, 1967, 175 (06): : 1238 - +
  • [28] OPTIMAL-CONTROL OF DISTRIBUTED SYSTEMS
    BREAKWELL, JA
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1981, 29 (04): : 343 - 372
  • [29] OPTIMAL CONTROL OF SYSTEMS WITH DISTRIBUTED PARAMETERS
    DEGTYARE.GL
    SIRAZETD.TK
    ENGINEERING CYBERNETICS, 1967, (01): : 153 - +
  • [30] First Order Methods For Globally Optimal Distributed Controllers Beyond Quadratic Invariance
    Furieri, Luca
    Kamgarpour, Maryam
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 4588 - 4593