High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation

被引:33
|
作者
House, M. G. [1 ]
Bartlett, I. [1 ]
Pakkiam, P. [1 ]
Koch, M. [1 ]
Peretz, E. [1 ]
van der Heijden, J. [1 ]
Kobayashi, T. [1 ]
Rogge, S. [1 ]
Simmons, M. Y. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
来源
PHYSICAL REVIEW APPLIED | 2016年 / 6卷 / 04期
基金
澳大利亚研究理事会;
关键词
ELECTRON-SPIN; SILICON; TRANSISTOR; BLOCKADE;
D O I
10.1103/PhysRevApplied.6.044016
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the development of a high-sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead designed to minimize the geometric requirements of a charge sensor for scalable quantum-computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography, and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single-electron transistor (rf SET) with which to make a comparison of the charge-detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1 compared with an integration time of 55 ns for the rf SET. This level of sensitivity is suitable for fast (< 15 mu s) single-spin readout in quantum-information applications, with a significantly reduced geometric footprint compared to the rf SET.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The dynamics of energy and charge transfer in lead sulfide quantum dot solids
    Lingley, Zachary
    Lu, Siyuan
    Madhukar, Anupam
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (08)
  • [32] High-frequency electrical charge and spin control in a single InGaAs quantum dot
    Nannen, J.
    Quitsch, W.
    Eliasson, S.
    Kuemmell, T.
    Bacher, G.
    PHYSICAL REVIEW B, 2012, 85 (03):
  • [33] Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors
    Sliz, Rafal
    Lejay, Marc
    Fan, James Z.
    Choi, Min-Jae
    Kinge, Sachin
    Hoogland, Sjoerd
    Fabritius, Tapio
    de Arguer, F. Pelayo Garcia
    Sargent, Edward H.
    ACS NANO, 2019, 13 (10) : 11988 - 11995
  • [34] Nanogap quantum dot photodetectors with high sensitivity and bandwidth
    Hegg, Michael C.
    Horning, Matthew P.
    Baehr-Jones, Tom
    Hochberg, Michael
    Lin, Lih Y.
    APPLIED PHYSICS LETTERS, 2010, 96 (10)
  • [35] CARBON QUANTUM DOTS FROM CARROT AS FLUORESCENCE PROBES FOR HIGH-SENSITIVITY DETECTION OF LIDOCAINE
    Meng, L. F.
    Wu, H. Z.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2023, 21 (05): : 4531 - 4544
  • [36] Differential charge detection for quantum-dot cellular automata
    Amlani, I
    Orlov, AO
    Snider, GL
    Bernstein, GH
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06): : 2832 - 2835
  • [37] Differential charge detection for quantum-dot cellular automata
    Amlani, Islamshah
    Orlov, Alexei O.
    Snider, Gregory L.
    Bernstein, Gary H.
    Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1997, 15 (06):
  • [38] Single charge detection of an electron created by a photon in a g-factor engineered quantum dot
    Kuwahara, Makoto
    Kutsuwa, Takeshi
    Ono, Keiji
    Kosaka, Hideo
    APPLIED PHYSICS LETTERS, 2010, 96 (16)
  • [39] Time resolved single electron detection in a quantum dot
    Schleser, R
    Ruh, E
    Ihn, T
    Ensslin, K
    Driscoll, DD
    Gossard, AC
    Physics of Semiconductors, Pts A and B, 2005, 772 : 775 - 776
  • [40] Charge detection enables free-electron quantum computation
    Beenakker, CWJ
    DiVincenzo, DP
    Emary, C
    Kindermann, M
    PHYSICAL REVIEW LETTERS, 2004, 93 (02) : 020501 - 1