Generation of 3-D Glioblastoma-Vascular Niche using 3-D Bioprinting

被引:0
|
作者
Lee, Vivian K. [1 ]
Dai, Guohao [1 ]
Zou, Hongyan [2 ]
Yoo, Seung-Schik [3 ]
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA
[2] Icahn Sch Med Mt Sinai, Dept Neurosurg, Fishberg Dept Neurosci, New York, NY 10029 USA
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Radiol, Boston, MA 02115 USA
关键词
3D bio-printing; glioblastoma; glioblastoma multiforme; glioma; vascular niche; cancer-vascular niche; tumor invasion; hydrogel;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Glioblastoma multiforme (GBM), a malignant brain tumor, frequently exploit microvessels as guides for migration. Understanding cell-cell interaction between vascular cells and GBM cells may suggest a new therapeutic direction. We developed physiological 3-D glioma-vascular niche model to investigate this cell-cell interaction using 3-D bioprinting technology. In the model, patient-derived GBM cell cluster was closely located to fluidic vessel. The influence of microenvironmental factors (matrix composition) has been tested in order to provide better control on 3-D cell behavior in future research. The 3D vascular niche platform can be adapted to other biological systems and will be used as a valuable tool to model cell-cell interactions and to control microenvironment in other systems.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] 3-D display using a new 3-D perceptual phenomenon discovered in NTT
    Suyama, S
    Takada, H
    Hiruma, K
    Nakazawa, K
    NTT REVIEW, 2003, 15 (01): : 35 - 38
  • [32] 3-D BEAMS NEED UNAMBIGUOUS 3-D NAMES
    BAILLIE, A
    LAPOINTE, C
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1991, 21 (04): : 1105 - 1105
  • [33] 3-D Face Verification with 3-D Face Scanner
    Toyama, Yasuhiro
    Sato, Yukio
    Honda, Ikuji
    ISOT: 2009 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES, 2009, : 175 - 178
  • [34] Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays
    Peuskens, H
    Claeys, KG
    Todd, JT
    Norman, JF
    Van Hecke, P
    Orban, GA
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (04) : 665 - 682
  • [35] 3-D Vascular Skeleton Extraction and Decomposition
    Chowriappa, Ashirwad
    Seo, Yong
    Salunke, Sarthak
    Mokin, Maxim
    Kan, Peter
    Scott, Peter
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (01) : 139 - 147
  • [36] Engineer a Functional, 3-D Vascular Niche to Support Neural Stem Cell Regeneration
    Winkelman, M. A.
    Dai, G.
    2015 41ST ANNUAL NORTHEAST BIOMEDICAL ENGINEERING CONFERENCE (NEBEC), 2015,
  • [37] 3-D reconstruction of tumor vascular networks
    Prohaska, S
    Dreher, M
    Dewhirst, MW
    Chilkoti, A
    Pries, AR
    Westerhoff, M
    Cornelissen, AJM
    JOURNAL OF VASCULAR RESEARCH, 2004, 41 (05) : 463 - 463
  • [38] Advances in 3-D vascular ultrasound imaging
    Fenster, Aaron
    American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, 1999, 43 : 83 - 84
  • [39] 减少3-D DMO和3-D叠前偏移中3-D采集的痕迹
    Anat Canning
    Gerald H.F.Gardner
    李令喜
    国外油气勘探, 1999, 11 (03) : 304 - 312
  • [40] Efficient 3-D model search and retrieval using Generalized 3-D Radon Transforms
    Daras, P
    Zarpalas, D
    Tzovaras, D
    Strintzis, MG
    IEEE TRANSACTIONS ON MULTIMEDIA, 2006, 8 (01) : 101 - 114