On topological classification of non-archimedean Frechet spaces

被引:4
|
作者
Sliwa, W [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
non-archimedean; Frechet spaces; homeomorphisms;
D O I
10.1023/B:CMAJ.0000042384.21869.5d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any infinite-dimensional non-archimedean Frechet space E is homeomorphic to D-N where D is a discrete space with card(D) = dens(E). It follows that infinite-dimensional non-archimedean Frechet spaces E and F are homeomorphic if and only if dens(E) = dens(F). In particular, any infinite-dimensional non-archimedean Frechet space of countable type over a field K is homeomorphic to the non-archimedean Frechet space K-N.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 50 条
  • [21] On topological extensions of Archimedean and non-Archimedean rings
    Andrei Yu. Khrennikov
    Jan Harm Van der Walt
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3 (4) : 326 - 333
  • [22] Non-archimedean topological monoids
    Megrelishvili, M.
    Shlossberg, M.
    SEMIGROUP FORUM, 2024, 109 (03) : 597 - 625
  • [23] Embeddings of non-Archimedean Banach manifolds in non-Archimedean Banach spaces
    Lyudkovskii, SV
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (05) : 1097 - 1098
  • [24] On non-archimedean Gurarii spaces
    Kakol, J.
    Kubis, W.
    Kubzdela, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 969 - 981
  • [25] Selectors in non-Archimedean spaces
    Artico, G.
    Marconi, U.
    Moresco, R.
    Pelant, J.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 540 - 551
  • [26] On non-Archimedean Hilbertian spaces
    Kubzdela, Albert
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 601 - 610
  • [27] Non-Archimedean Analytic Spaces
    Werner A.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2013, 115 (1) : 3 - 20
  • [28] NON-ARCHIMEDEAN BANACH SPACES
    PUT, MVD
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1969, 97 (03): : 309 - &
  • [29] A Topological Approach to Non-Archimedean Mathematics
    Benci, Vieri
    Luperi Baglini, Lorenzo
    GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S, 2016, 176 : 17 - 40
  • [30] Notes on non-archimedean topological groups
    Megrelishvili, Michael
    Shlossberg, Menachem
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (09) : 2497 - 2505