Simulation on antireflection of the oxide nanosphere monolayer film

被引:4
|
作者
Hou, Yuxiao [1 ]
Li, Xiaohong [1 ]
Luo, Hang [1 ]
Lei, Wei [1 ]
Lei, Hong [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Sichuan, Peoples R China
[2] Southwest Univ Sci & Technol, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Sichuan, Peoples R China
关键词
BROAD-BAND; THIN-FILM; COATINGS; GLASS; FABRICATION; RESISTANCE;
D O I
10.1364/AO.58.004926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically simulate the antireflective effects of oxide nanosphere monolayer films in the visible spectrum. The essential geometric and material parameters of nanosphere films are simulated and different functions are proposed to describe the dependence of reflectance on the influencing factors. The rational function is fitted to describe the monotonic decreasing of reflectance on the ratio of nanospheres' radius to incident wavelength. At a wavelength of 550 nm and incidence at 75 degrees, the reflectance of the glass substrate coated with SiO2 decreases to 14.1% compared with 41.7% of the uncoated glass. The results have an excellent potential for applications in optical devices such as filters, polarizing elements, and camera lenses. (C) 2019 Optical Society of America
引用
收藏
页码:4926 / 4932
页数:7
相关论文
共 50 条
  • [31] Au monolayer film coating with graphene oxide for surface enhanced Raman effect
    Qiang Ma
    Xianpei Ren
    Liuqing Pang
    Min Zhu
    Yuzhen Zhao
    Siyi Ding
    Shaopeng Tian
    Huaping Ren
    Zongcheng Miao
    Gold Bulletin, 2018, 51 : 27 - 33
  • [32] Monolayer iron oxide film on platinum promotes low temperature CO oxidation
    Sun, Y. -N.
    Qin, Z. -H.
    Lewandowski, M.
    Carrasco, E.
    Sterrer, M.
    Shaikhutdinov, S.
    Freund, H. -J.
    JOURNAL OF CATALYSIS, 2009, 266 (02) : 359 - 368
  • [33] Surface design of monolayer-template for reproducible microfabrication of metal oxide film
    Shirahata, N
    Sakka, Y
    Hozumi, A
    THIN SOLID FILMS, 2006, 499 (1-2) : 293 - 298
  • [34] Au monolayer film coating with graphene oxide for surface enhanced Raman effect
    Ma, Qiang
    Ren, Xianpei
    Pang, Liuqing
    Zhu, Min
    Zhao, Yuzhen
    Ding, Siyi
    Tian, Shaopeng
    Ren, Huaping
    Miao, Zongcheng
    GOLD BULLETIN, 2018, 51 (1-2): : 27 - 33
  • [35] Monolithic high performance antireflection polymer film
    Choi, Kiwoon
    Park, Sung Ho
    Song, Young Min
    Lee, Hap Sup
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [36] Kinetic Monte Carlo simulation of monolayer gold film growth on a graphite substrate
    Claassens, CH
    Terblans, JJ
    Hoffman, MJH
    Swart, HC
    SURFACE AND INTERFACE ANALYSIS, 2005, 37 (11) : 1021 - 1026
  • [37] Diffractive elements with novel antireflection film stacks
    Elfström, H
    Vallius, T
    Kuittinen, M
    Turunen, J
    Clausnitzer, T
    Kley, EB
    OPTICS EXPRESS, 2004, 12 (25): : 6385 - 6390
  • [38] Improvement of titanium film absorption with antireflection coatings
    Taralli, E
    Portesi, C
    Ricciardi, C
    Tresso, E
    Rajteri, M
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (02): : 757 - 759
  • [39] Broadband antireflection film by glancing angle deposition
    Feng, Cao
    Zhang, Weili
    Wang, Jianguo
    Ma, Haixia
    Liu, Shijie
    Yi, Kui
    He, Hongbo
    Shao, Jianda
    OPTICAL MATERIALS, 2021, 111
  • [40] Etching of TiO2 nanopillar arrays by nanosphere lithography for broadband infrared antireflection applications
    Zhang, Bei
    Peng, Xincun
    Yang, Luhao
    Zou, Jijun
    Li, Chenyang
    Zhong, Chaoyan
    Liu, Siyuan
    Jiang, Linlin
    Deng, Wenjuan
    Liu, Zhuming
    Tang, Liangliang
    INFRARED PHYSICS & TECHNOLOGY, 2023, 128