A matroid generalization of a result on row-Latin rectangles

被引:2
|
作者
Chappell, GG [1 ]
机构
[1] SE Missouri State Univ, Dept Math, Cape Girardeau, MO 63701 USA
关键词
row-Latin rectangle; matroid; transversal;
D O I
10.1006/jcta.1999.2999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an m X n matrix in which the entries of each row are all distinct. it A. Drisko (1998, J. Combin. Theory Se,. A 84, 181-195) showed that if m greater than or equal to 2n - 1, then A has a transversal: a set of,1 distinct entries with no two in the same row or column. We generalize this to matrices with entries in the ground set of a matroid, Fur such a matrix ii, we show that if each row of A forms an independent set, then we can require the transversal to be independent as well. We determine the complexity of an algorithm based on the proof of this result. Finally, we observe that m greater than or equal to 2n - 1 appears to force the existence of not merely one but many transversals. We discuss a number of conjectures related to this observation (some of which involve matroids and some of which do not). (C) 1999 Academic Press.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 50 条
  • [21] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (01) : 61 - 61
  • [22] ENUMERATION OF TRUNCATED LATIN RECTANGLES
    LIGHT, FW
    FIBONACCI QUARTERLY, 1979, 17 (01): : 34 - 36
  • [23] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) : 231 - 236
  • [24] On Computing the Number of Latin Rectangles
    Rebecca J. Stones
    Sheng Lin
    Xiaoguang Liu
    Gang Wang
    Graphs and Combinatorics, 2016, 32 : 1187 - 1202
  • [25] Maximal orthogonal Latin rectangles
    Horak, P
    Rosa, A
    Siran, J
    ARS COMBINATORIA, 1997, 47 : 129 - 145
  • [26] On Computing the Number of Latin Rectangles
    Stones, Rebecca J.
    Lin, Sheng
    Liu, Xiaoguang
    Wang, Gang
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1187 - 1202
  • [27] ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES
    GODSIL, CD
    MCKAY, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 19 - 44
  • [28] Latin rectangles and quadrature formulas
    Dobrovol'skii, N. M.
    Dobrovol'skii, N. N.
    Rebrova, I. Yu.
    Balaba, I. N.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 82 - 88
  • [29] JOINTLY EXTENDABLE LATIN RECTANGLES
    HORAK, P
    KREHER, DL
    ROSA, A
    UTILITAS MATHEMATICA, 1989, 36 : 193 - 195
  • [30] Permanents, matchings and Latin rectangles
    Wanless, IM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 169 - 170