Sensitivity analysis of cardiac electrophysiological models using polynomial chaos

被引:4
|
作者
Geneser, Sarah E. [1 ]
Kirby, Robert M. [1 ]
Sachse, Frank B. [1 ]
机构
[1] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
关键词
polynomial chaos; stochastic processes; sensitivity quantification; biological computational modeling; cardiac electrophysiology;
D O I
10.1109/IEMBS.2005.1615349
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Mathematical models of biophysical phenomena have proven useful in the reconstruction of experimental data and prediction of biological behavior. By quantifying the sensitivity of a model to certain parameters, one can place an appropriate amount of emphasis in the accuracy with which those parameters are determined. In addition, investigation of stochastic parameters can lead to a greater understanding of the behavior captured by the model. This can lead to possible model reductions, or point out shortcomings to be addressed. We present polynomial chaos as a computationally efficient alternative to Monte Carlo for assessing the impact of stochastically distributed parameters on the model predictions of several cardiac electrophysiological models.
引用
收藏
页码:4042 / 4045
页数:4
相关论文
共 50 条
  • [21] Global Sensitivity Analysis in Aerodynamic Design Using Shapley Effects and Polynomial Chaos Regression
    Palar, Pramudita Satria
    Zuhal, Lavi Rizki
    Shimoyama, Koji
    IEEE ACCESS, 2023, 11 : 114825 - 114839
  • [22] Uncertainty and global sensitivity analysis of neutron survival and extinction probabilities using polynomial chaos
    Cooling, C. M.
    Ayres, D. A. F.
    Prinja, A. K.
    Eaton, M. D.
    ANNALS OF NUCLEAR ENERGY, 2016, 88 : 158 - 173
  • [23] Global sensitivity analysis for phosphate slurry flow in pipelines using generalized polynomial chaos
    Elkarii, M.
    Boukharfane, R.
    Benjelloun, S.
    Bouallou, C.
    El Mocayd, N.
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [24] Global sensitivity and uncertainty analysis of a coastal morphodynamic model using Polynomial Chaos Expansions
    Jamous, Mohammad
    Marsooli, Reza
    Ayyad, Mahmoud
    ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 160
  • [25] Fast and accurate sensitivity analysis of IMPT treatment plans using Polynomial Chaos Expansion
    Perko, Zoltan
    van der Voort, Sebastian R.
    van de Water, Steven
    Hartman, Charlotte M. H.
    Hoogeman, Mischa
    Lathouwers, Danny
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (12): : 4646 - 4664
  • [26] Sensitivity and reliability analysis of a globe valve using an adaptive sparse polynomial chaos expansion
    Berveiller, M.
    Blatman, G.
    APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 645 - 652
  • [27] Fast and accurate sensitivity analysis of IMPT treatment plans using Polynomial Chaos Expansion
    Hoogeman, M. S.
    van der Voort, S. R.
    Perko, Z.
    van de Water, S.
    Hartman, C.
    Heijmen, B. J. M.
    Lathouwers, D.
    RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S458 - S458
  • [28] Statistical Sensitivity Analysis in Distributed Circuits using Compact Polymorphic Polynomial Chaos Surrogates
    Yusuf, Mohd
    Roy, Sourajeet
    2021 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS (EDAPS), 2021,
  • [29] Global sensitivity analysis of damped sandwich plates using sparse polynomial chaos expansions
    Hamdaoui, Mohamed
    Daya, El Mostafa
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [30] Emulation of environmental models using polynomial chaos expansion
    Massoud, Elias C.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 111 : 421 - 431