PROGRAM EVALUATION AND CAUSAL INFERENCE WITH HIGH-DIMENSIONAL DATA

被引:190
|
作者
Belloni, A. [1 ]
Chernozhukov, V. [2 ]
Fernandez-Val, I. [3 ]
Hansen, C. [4 ]
机构
[1] Duke Univ, Fuqua Sch Business, 100 Fuqua Dr,POB 90120,Off W312, Durham, NC 27708 USA
[2] MIT, Dept Econ, 50 Mem Dr,E52-361B, Cambridge, MA 02142 USA
[3] Boston Univ, Dept Econ, 270 Bay State Rd,Room 415A, Boston, MA 02215 USA
[4] Univ Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Machine learning; causality; Neyman orthogonality; heterogenous treatment effects; endogeneity; local average and quantile treatment effects; instruments; local effects of treatment on the treated; propensity score; Lasso; inference after model selection; moment-condition models; moment-condition models with a continuum of target parameters; Lasso and Post-Lasso with functional response data; randomized control trials; EFFICIENT SEMIPARAMETRIC ESTIMATION; POST-REGULARIZATION INFERENCE; SQUARE-ROOT LASSO; QUANTILE REGRESSION; MODEL-SELECTION; INSTRUMENTAL VARIABLES; MOMENT RESTRICTIONS; ASYMPTOTIC THEORY; PROPENSITY SCORE; LINEAR-MODELS;
D O I
10.3982/ECTA12723
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment, heterogeneous treatment effects, and function-valued outcomes. Our framework covers the special case of exogenous receipt of treatment, either conditional on controls or unconditionally as in randomized control trials. In the latter case, our approach produces efficient estimators and honest bands for (functional) average treatment effects (ATE) and quantile treatment effects (QTE). To make informative inference possible, we assume that key reduced-form predictive relationships are approximately sparse. This assumption allows the use of regularization and selection methods to estimate those relations, and we provide methods for post-regularization and post-selection inference that are uniformly valid (honest) across a wide range of models. We show that a key ingredient enabling honest inference is the use of orthogonal or doubly robust moment conditions in estimating certain reduced-form functional parameters. We illustrate the use of the proposed methods with an application to estimating the effect of 401(k) eligibility and participation on accumulated assets. The results on program evaluation are obtained as a consequence of more general results on honest inference in a general moment-condition framework, which arises from structural equation models in econometrics. Here, too, the crucial ingredient is the use of orthogonal moment conditions, which can be constructed from the initial moment conditions. We provide results on honest inference for (function-valued) parameters within this general framework where any high-quality, machine learning methods (e.g., boosted trees, deep neural networks, random forest, and their aggregated and hybrid versions) can be used to learn the nonparametric/high-dimensional components of the model. These include a number of supporting auxiliary results that are of major independent interest: namely, we (1) prove uniform validity of a multiplier bootstrap, (2) offer a uniformly valid functional delta method, and (3) provide results for sparsity-based estimation of regression functions for function-valued outcomes.
引用
收藏
页码:233 / 298
页数:66
相关论文
共 50 条
  • [31] High-Dimensional Fuzzy Inference Systems
    Xue, Guangdong
    Wang, Jian
    Zhang, Kai
    Pal, Nikhil R.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (01): : 507 - 519
  • [32] Progressive Transmission of High-Dimensional Data Features for Inference at the Network Edge
    Lan, Qiao
    Zeng, Qunsong
    Popovski, Petar
    Gunduz, Deniz
    Huang, Kaibin
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [33] Inference and Verification of Probabilistic Graphical Models from High-Dimensional Data
    Ma, Yinjiao
    Damazyn, Kevin
    Klinger, Jakob
    Gong, Haijun
    DATA INTEGRATION IN THE LIFE SCIENCES, DILS 2015, 2015, 9162 : 223 - 239
  • [34] STATISTICAL INFERENCE FOR HIGH-DIMENSIONAL LINEAR REGRESSION WITH BLOCKWISE MISSING DATA
    Xue, Fei
    Ma, Rong
    Li, Hongzhe
    STATISTICA SINICA, 2025, 35 (01) : 431 - 456
  • [35] Online inference in high-dimensional generalized linear models with streaming data
    Luo, Lan
    Han, Ruijian
    Lin, Yuanyuan
    Huang, Jian
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 3443 - 3471
  • [36] Communication-efficient estimation and inference for high-dimensional longitudinal data
    Li, Xing
    Peng, Yanjing
    Wang, Lei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 208
  • [37] Nonparametric inference for stochastic linear hypotheses: Application to high-dimensional data
    Kowalski, J
    Powell, J
    BIOMETRIKA, 2004, 91 (02) : 393 - 408
  • [38] On generalized latent factor modeling and inference for high-dimensional binomial data
    Ma, Ting Fung
    Wang, Fangfang
    Zhu, Jun
    BIOMETRICS, 2023, 79 (03) : 2311 - 2320
  • [39] Inference on High-dimensional Single-index Models with Streaming Data
    Han, Dongxiao
    Xie, Jinhan
    Liu, Jin
    Sun, Liuquan
    Huang, Jian
    Jiang, Bei
    Kong, Linglong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [40] Robust Statistical Inference for High-Dimensional Data Models with Application to Genomics
    Sen, Pranab Kumar
    AUSTRIAN JOURNAL OF STATISTICS, 2006, 35 (2-3) : 197 - 214