Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the Cohort Hip and Cohort Knee (CHECK) study

被引:32
|
作者
Hirvasniemi, J. [1 ,2 ]
Gielis, W. P. [2 ]
Arbabi, S. [3 ]
Agricola, R. [4 ]
van Spil, W. E. [5 ]
Arbabi, V. [2 ,6 ,7 ]
Weinans, H. [2 ,6 ]
机构
[1] Univ Oulu, Fac Informat Technol & Elect Engn, Ctr Machine Vis & Signal Anal, POB 4500, FI-90014 Oulu, Finland
[2] Univ Med Ctr Utrecht, Dept Orthoped, Utrecht, Netherlands
[3] Univ Zabol, Dept Comp Engn, Fac Engn, Zabol, Iran
[4] Erasmus MC, Dept Orthopaed, Rotterdam, Netherlands
[5] Univ Med Ctr Utrecht, Dept Rheumatol & Clin Immunol, Utrecht, Netherlands
[6] Delft Univ Technol, Dept Biomech Engn, Delft, Netherlands
[7] Univ Birjand, Dept Mech Engn, Fac Engn, Birjand, Iran
基金
芬兰科学院;
关键词
Radiography; Hip osteoarthritis; Prediction; Bone texture; Machine learning; FEMORAL-NECK FRACTURE; TRABECULAR BONE; 3-DIMENSIONAL MICROARCHITECTURE; PLAIN RADIOGRAPHS; MINERAL DENSITY; RISK; SIGNATURE; MODELS; MACRORADIOGRAPHS; REGULARIZATION;
D O I
10.1016/j.joca.2019.02.796
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: To assess the ability of radiography-based bone texture variables in proximal femur and acetabulum to predict incident radiographic hip osteoarthritis (rHOA) over a 10 years period. Design: Pelvic radiographs from CHECK at baseline (987 hips) were analyzed for bone texture using fractal signature analysis (FSA) in proximal femur and acetabulum. Elastic net (machine learning) was used to predict the incidence of rHOA (including Kellgren-Lawrence grade (KL) >= 2 or total hip replacement (THR)), joint space narrowing score (JSN, range 0-3), and osteophyte score (OST, range 0-3) after 10 years. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC). Results: Of the 987 hips without rHOA at baseline, 435 (44%) had rHOA at 10-year follow-up. Of the 667 hips with JSN grade 0 at baseline, 471 (71%) had JSN grade >= 1 at 10-year follow-up. Of the 613 hips with OST grade 0 at baseline, 526 (86%) had OST grade >= 1 at 10-year follow-up. AUCs for the models including age, gender, and body mass index (BMI) to predict incident rHOA, JSN, and OST were 0.59, 0.54, and 0.51, respectively. The inclusion of bone texture variables in the models improved the prediction of incident rHOA (ROC AUC 0.68 and 0.71 when baseline KL was also included in the model) and JSN (ROC AUC 0.62), but not incident OST (ROC AUC 0.52). Conclusion: Bone texture analysis provides additional information for predicting incident rHOA or THR over 10 years. (C) 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:906 / 914
页数:9
相关论文
共 50 条
  • [41] TRABECULAR BONE TEXTURE ANALYSIS OF CONVENTIONAL RADIOGRAPHS FOR THE PREDICTION OF TOTAL KNEE REPLACEMENT RISK: DATA FROM THE OSTEOARTHRITIS INITIATIVE COHORT
    Almhdie-Imjabbar, A.
    Lespessailles, E.
    Toumi, H.
    OSTEOARTHRITIS AND CARTILAGE, 2021, 29 : S65 - S65
  • [42] Total hip replacement but not clinical osteoarthritis can be predicted by the shape of the hip: a prospective cohort study (CHECK)
    Agricola, R.
    Reijman, M.
    Bierma-Zeinstra, S. M. A.
    Verhaar, J. A. N.
    Weinans, H.
    Waarsing, J. H.
    OSTEOARTHRITIS AND CARTILAGE, 2013, 21 (04) : 559 - 564
  • [43] Knee and Hip Radiographic Osteoarthritis Predict Total Hip Bone Loss in Older Adults: A Prospective Study
    Ding, Changhai
    Cicuttini, Flavia M.
    Boon, Catrina
    Boon, Pip
    Srikanth, Velandai
    Cooley, Helen
    Jones, Graeme
    JOURNAL OF BONE AND MINERAL RESEARCH, 2010, 25 (04) : 858 - 865
  • [44] OA-Pain-Sense: Machine Learning Prediction of Hip and Knee Osteoarthritis Pain from IMU Data
    Almuhammadi, Wafaa Salem
    Agu, Emmanuel
    King, Jean
    Franklin, Patricia
    INFORMATICS-BASEL, 2022, 9 (04):
  • [45] Chondrocalcinosis of the Knee and the Risk of Osteoarthritis Progression: Data From the Knee and Hip Osteoarthritis Long-term Assessment Cohort
    Latourte, Augustin
    Rat, Anne-Christine
    Sime, Willy Ngueyon
    Ea, Hang-Korng
    Bardin, Thomas
    Mazieres, Bernard
    Roux, Christian
    Guillemin, Francis
    Richette, Pascal
    ARTHRITIS & RHEUMATOLOGY, 2020, 72 (05) : 726 - 732
  • [46] Smoking and Knee and Hip Osteoarthritis Evolution. Results from the Knee and Hip Osteoarthritis Long-Terme Assessment Cohort
    Roux, Christian
    Coste, Joel
    Mazieres, Bernard
    Roger, Coralie
    Fontas, Eric
    Fautrel, Bruno
    Pouchot, Jacques
    Fardellone, Patrice
    Rat, Anne-Christine
    Saraux, Alain
    Guillemin, Francis
    Ziegler, Liana Euller
    ARTHRITIS & RHEUMATOLOGY, 2015, 67
  • [47] Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK)
    Agricola, Rintje
    Heijboer, Marinus P.
    Bierma-Zeinstra, Sita M. A.
    Verhaar, Jan A. N.
    Weinans, Harrie
    Waarsing, Jan H.
    ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 (06) : 918 - 923
  • [48] THE ASSOCIATION BETWEEN RADIOGRAPHIC FEATURES AND HIP PAIN: A WITHIN-PERSON ANALYSIS BASED ON DATA FROM THE CHECK COHORT
    van Riet, R. C.
    Wang, Q.
    Macri, E. M.
    Bierma-Zeinstra, S. M. A.
    Runhaar, J.
    OSTEOARTHRITIS AND CARTILAGE, 2023, 31 : S184 - S185
  • [49] Prevalence and development of hip and knee osteoarthritis according to American College of Rheumatology criteria in the CHECK cohort
    Damen, Jurgen
    van Rijn, Rogier M.
    Emans, Pieter J.
    Hilberdink, Willem K. H. A.
    Wesseling, Janet
    Oei, Edwin H. G.
    Bierma-Zeinstra, Sita M. A.
    ARTHRITIS RESEARCH & THERAPY, 2019, 21 (1)
  • [50] Prevalence and development of hip and knee osteoarthritis according to American College of Rheumatology criteria in the CHECK cohort
    Jurgen Damen
    Rogier M. van Rijn
    Pieter J. Emans
    Willem K. H. A. Hilberdink
    Janet Wesseling
    Edwin H. G. Oei
    Sita M. A. Bierma-Zeinstra
    Arthritis Research & Therapy, 21