Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

被引:71
|
作者
Nabovati, Aydin [1 ]
Hinebaugh, James [2 ]
Bazylak, Aimy [2 ]
Amon, Cristina H. [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Adv Thermal Fluids Optimizat Modelling & Simulat, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Mech & Ind Engn, Thermofluids Energy & Adv Mat TEAM Lab, Toronto, ON M5S 3G8, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Porosity heterogeneity; Binder & PTFE; Permeability; Tortuosity; Gas diffusion layer; Lattice Boltzmann method; EFFECTIVE THERMAL-CONDUCTIVITY; MASS-TRANSPORT; PEMFC GDLS; DISTRIBUTIONS; FLOW; SIMULATIONS; CONVECTION; RESISTANCE; INPLANE;
D O I
10.1016/j.jpowsour.2013.09.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120 (TM), GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher crossplane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [31] Influence of Gas Diffusion Layers with Microporous Layer on the Performance of Polymer Electrolyte Fuel Cells
    Kitahara, T.
    Konomi, T.
    Nakajima, H.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 1735 - 1744
  • [32] Effect of Commercial Gas Diffusion Layers on Catalyst Durability of Polymer Electrolyte Fuel Cells in Varied Cathode Gas Environment
    Khedekar, Kaustubh
    Satjaritanun, Pongsarun
    Stewart, Sarah
    Braaten, Jonathan
    Atanassov, Plamen
    Tamura, Nobumichi
    Cheng, Lei
    Johnston, Christina M.
    Zenyuk, Iryna, V
    SMALL, 2022, 18 (33)
  • [33] Effect of Hydrophobic Particles in a Gas Diffusion Electrode on Cell Performance in Polymer Electrolyte Membrane Fuel Cells
    Kim, In-Tae
    Lee, Jae-Young
    Rim, Hyung-Ryul
    Lee, Hong-Ki
    Shim, Joongpyo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (11): : 9131 - 9141
  • [34] Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte membrane fuel cells
    Zamel, Nada
    Li, Xianguo
    Becker, Juergen
    Wiegmann, Andreas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5466 - 5478
  • [35] Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells
    Kim, Kwang Nam
    Kang, Jung Ho
    Lee, Sang Gun
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF POWER SOURCES, 2015, 278 : 703 - 717
  • [36] Designing Tailored Gas Diffusion Layers with Pore Size Gradients via Electrospinning for Polymer Electrolyte Membrane Fuel Cells
    Balakrishnan, Manojkumar
    Shrestha, Pranay
    Ge, Nan
    Lee, ChungHyuk
    Fahy, Kieran F.
    Zeis, Roswitha
    Schulz, Volker P.
    Hatton, Benjamin D.
    Bazylak, Aimy
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (03): : 2695 - 2707
  • [37] Determination of the effective thermal conductivity of gas diffusion layers in polymer electrolyte membrane fuel cells: a comprehensive fractal approach
    Nikooee, Ehsan
    Karimi, Gholamreza
    Li, Xianguo
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (15) : 1351 - 1359
  • [38] Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells
    Huang, Yu-Xian
    Cheng, Chin-Hsiang
    Wang, Xiao-Dong
    Jang, Jiin-Yuh
    ENERGY, 2010, 35 (12) : 4786 - 4794
  • [39] NUMERICAL SIMULATION OF NON-UNIFORM GAS DIFFUSION LAYER POROSITY EFFECT ON POLYMER ELECTROLYTE MEMBRANE FUEL CELL PERFORMANCE
    Roshandel, R.
    Farhanieh, B.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2007, 20 (02): : 179 - 192
  • [40] Impact of cracked gas diffusion layer on performance of polymer electrolyte membrane fuel cells
    Kim, Geon Hwi
    Kim, Dasol
    Kim, Jaeyeon
    Kim, Hyeok
    Park, Taehyun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 : 311 - 316