Stability criteria for two-dimensional wetting in monolayers

被引:6
|
作者
Heinig, P
Wurlitzer, S
John, T
Fischer, TM
机构
[1] Max Planck Inst Colloids & Interfaces, D-14476 Golm, Germany
[2] Univ Leipzig, Fak Phys & Geowissensch, D-04103 Leipzig, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2002年 / 106卷 / 46期
关键词
D O I
10.1021/jp0255177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional pendant liquid expanded droplets partially wet the liquid condensed/gas-phase boundaries in methyl octadecanoate Langmuir monolayers. Their shape is described by the Young-Laplace equation including long-range electrostatic interactions on a scale Delta. It is invariant under shape-invariant scale transformations. We show that the local stability at the three-phase intersection point is described by Young's equation for the contact angle. The contact angle is not invariant under shape-invariant scale transformations but is a materials constant at a fixed scale parameter Delta. By comparison of numerically simulated droplets with experimental droplets observed with a fluorescence microscope, we determine the spreading coefficient of wetting Langmuir monolayer phases as well as a lower limit for Delta. We find 0.12 mum < Delta and suggest that the scale parameter shall be interpreted as a dipolar correlation length. not as a molecular cutoff length.
引用
收藏
页码:11951 / 11960
页数:10
相关论文
共 50 条
  • [21] Variational principles and stability criteria for two-dimensional, gravitating, ideal magnetohydrodynamic configurations
    Khater, A. H.
    Callebaut, D. K.
    Abdelhameed, T. N.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2006, 121 (09): : 995 - 1004
  • [22] STABILITY OF A TWO-DIMENSIONAL JET
    MORRIS, PJ
    AIAA JOURNAL, 1981, 19 (07) : 857 - 862
  • [23] Stability of two-dimensional nanostructures
    Morgenstern, K
    Lægsgaard, E
    Stensgaard, I
    Besenbacher, F
    Böhringer, M
    Schneider, WD
    Berndt, R
    Mauri, F
    De Vita, A
    Car, R
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (05): : 559 - 569
  • [24] Stability of two-dimensional nanostructures
    K. Morgenstern
    E. Laegsgaard
    I. Stensgaard
    F. Besenbacher
    M. Böhringer
    W.-D. Schneider
    R. Berndt
    F. Mauri
    A. De Vita
    R. Car
    Applied Physics A, 1999, 69 : 559 - 569
  • [25] Stability of two-dimensional foam
    elKader, AA
    Earnshaw, JC
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1997, 76 (06): : 1251 - 1260
  • [26] On the lifetimes of two-dimensional droplets on smooth wetting patterns
    Haynes, Matthew
    Pradas, Marc
    JOURNAL OF ENGINEERING MATHEMATICS, 2022, 135 (01)
  • [27] Analytical Solutions for Partially Wetting Two-Dimensional Droplets
    Gomba, J. M.
    Homsy, G. M.
    LANGMUIR, 2009, 25 (10) : 5684 - 5691
  • [28] Two-Dimensional Wetting Transition Modeling with the Potts Model
    Daisiane M. Lopes
    José C. M. Mombach
    Brazilian Journal of Physics, 2017, 47 : 672 - 677
  • [29] Wetting states of two-dimensional drops under gravity
    Lv, Cunjing
    Shi, Songlin
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [30] Corner wetting transition in the two-dimensional Ising model
    Lipowski, A
    PHYSICAL REVIEW E, 1998, 58 (01): : R1 - R3