Discrete supersymmetries of the Schrodinger equation and nonlocal exactly solvable potentials

被引:4
|
作者
Samsonov, BF
Suzko, AA
机构
[1] Tomsk VV Kuibyshev State Univ, Dept Quantum Field theory, Tomsk 634050, Russia
[2] Joint Inst Nucl Res, Dubna 141980, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0375-9601(02)01145-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using an isomorphism between Hilbert spaces L-2 and l(2) we consider Hamiltonians which have tridiagonal matrix representations (Jacobi matrices) in a discrete basis and an eigenvalue problem is reduced to solving a three term difference equation. Technique of intertwining operators is applied to creating new families of exactly solvable Jacobi matrices. It is shown that any thus obtained Jacobi matrix gives rise to a new exactly solvable nonlocal potential of the Schrodinger equation. We also show that the algebraic structure underlying our approach corresponds to supersymmetry. Supercharge operators acting in the space l(2) x l(2) are introduced which together with a matrix form of the superhamiltonian close the simplest superalgebra. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:234 / 241
页数:8
相关论文
共 50 条
  • [31] Effective-mass Schrodinger equation and generation of solvable potentials
    Bagchi, B
    Gorain, P
    Quesne, C
    Roychoudhury, R
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) : 1019 - 1025
  • [32] MORE ON SUPERSYMMETRIES OF THE SCHRODINGER-EQUATION
    BECKERS, J
    DEBERGH, N
    NIKITIN, AG
    MODERN PHYSICS LETTERS A, 1992, 7 (18) : 1609 - 1616
  • [33] EXACTLY SOLVABLE MODELS FOR THE SCHRODINGER-EQUATION FROM GENERALIZED DARBOUX TRANSFORMATIONS
    SCHNIZER, WA
    LEEB, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19): : 5145 - 5156
  • [34] A unified treatment of exactly solvable and quasi-exactly solvable quantum potentials
    Bagchi, B
    Ganguly, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11): : L161 - L167
  • [35] Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schrodinger Hamiltonians
    Midya, B.
    Roy, B.
    PHYSICS LETTERS A, 2009, 373 (45) : 4117 - 4122
  • [36] Intertwining technique for a system of difference Schrodinger equations and new exactly solvable multichannel potentials
    Nieto, LM
    Samsonov, BF
    Suzko, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (49): : 12293 - 12304
  • [37] Nonintegrable spatial discrete nonlocal nonlinear schrodinger equation
    Ji, Jia-Liang
    Xu, Zong-Wei
    Zhu, Zuo-Nong
    CHAOS, 2019, 29 (10)
  • [38] On a discrete Schrodinger equation for a quantum dot with a nonlocal potential
    Korobeinikova, Natal'ya Ivanovna
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2024, 64 : 48 - 59
  • [39] Statistical Solution for the Nonlocal Discrete Nonlinear Schrodinger Equation
    Li, Congcong
    Li, Chunqiu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (03)
  • [40] Exactly solvable two-dimensional stationary Schrodinger operators obtained by the nonlocal Darboux transformation
    Kudryavtsev, A. G.
    PHYSICS LETTERS A, 2013, 377 (38) : 2477 - 2480