On the occupation measure of super-Brownian motion

被引:2
|
作者
Le Gall, Jean-Francois
Merle, Mathieu
机构
[1] ENS, DMA, F-75005 Paris, France
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1W5, Canada
关键词
super-Brownian motion; occupation measure; limit distribution;
D O I
10.1214/ECP.v11-1225
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the asymptotic behavior of the occupation measure Z(B-1) of the unit ball for super-Brownian motion started from the Dirac measure at a distant point x and conditioned to hit the unit ball. In the critical dimension d = 4, we obtain a limiting exponential distribution for the ratio Z(B-1)/ log | x|.
引用
收藏
页码:252 / 265
页数:14
相关论文
共 50 条
  • [31] The extremal process of super-Brownian motion
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 137 : 1 - 34
  • [32] Killed rough super-Brownian motion
    Rosati, Tommaso Cornelis
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 12
  • [33] The dimension of the boundary of super-Brownian motion
    Leonid Mytnik
    Edwin Perkins
    Probability Theory and Related Fields, 2019, 174 : 821 - 885
  • [34] An exit measure construction of the total local time of super-Brownian motion
    Hong, Jieliang
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [35] ON THE BOUNDARY OF THE SUPPORT OF SUPER-BROWNIAN MOTION
    Mueller, Carl
    Mytnik, Leonid
    Perkins, Edwin
    ANNALS OF PROBABILITY, 2017, 45 (6A): : 3481 - 3534
  • [37] Lattice trees and super-Brownian motion
    Derbez, E
    Slade, G
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01): : 19 - 38
  • [38] The dimension of the boundary of super-Brownian motion
    Mytnik, Leonid
    Perkins, Edwin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 821 - 885
  • [39] The multifractal structure of super-Brownian motion
    Perkins, EA
    Taylor, SJ
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (01): : 97 - 138
  • [40] The average density of super-Brownian motion
    Mörters, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (01): : 71 - 100