The instrumental line shape of the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS)

被引:9
|
作者
Boone, C. D. [1 ]
Bernath, P. F. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA
关键词
Infrared Fourier transform spectroscopy; Instrumental line shape; OBSERVING SATELLITE; DISTORTIONS; PARAMETERS;
D O I
10.1016/j.jqsrt.2019.03.018
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Accurate modeling of the instrumental line shape (ILS) of a Fourier transform spectrometer (FTS) is crucial for minimizing systematic errors in the analysis of FTS measurements. Isolated spectral features having widths much less than the ILS width can be used to determine a representation for the ILS. The instrument modulation function at a particular wavenumber can be calculated from the Fourier transform of an isolated spectral feature. Accounting for known contributions from the finite field of view and the shape of the spectral feature in the infinite resolution spectrum, one can directly observe the contribution from all additional sources of self-apodization to the instrument modulation function. This simplifies determination of the appropriate empirical function(s) to best characterize these additional self-apodization effects, alleviating the need to guess at forms for the empirical function. Lines spanning the instrument spectral range are analyzed to determine a wavenumber dependence for the empirical representation. This approach is employed to characterize the ILS for the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), a high resolution (0.02 cm(-1)) satellite-based instrument used for solar occultation studies of the Earth's atmosphere. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [32] Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic
    Holl, Gerrit
    Walker, Kaley A.
    Conway, Stephanie
    Saitoh, Naoko
    Boone, Chris D.
    Strong, Kimberly
    Drummond, James R.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (05) : 1961 - 1980
  • [33] Validation of line-of-sight winds from ACE-FTS solar occultation measurements
    Johnson, R.
    Bernath, P.
    Boone, C. D.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 314
  • [34] The Atmospheric Chemistry Experiment (ACE): An overview
    Bernath, P
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 952 - 954
  • [35] Atmospheric Chemistry Experiment (ACE): An overview
    Bernath, P
    EARTH OBSERVING SYSTEMS VII, 2002, 4814 : 39 - 49
  • [36] Atmospheric Chemistry Experiment (ACE): An overview
    Bernath, P
    SPECTROSCOPY FROM SPACE, 2001, 20 : 147 - 160
  • [37] A method for correcting Fourier Transform spectrometer (FTS) dynamic alignment errors
    Kelly, MW
    Mooney, DL
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 443 - 455
  • [38] Four Fourier transform spectrometers and the Arctic polar vortex: instrument intercomparison and ACE-FTS validation at Eureka during the IPY springs of 2007 and 2008
    Batchelor, R. L.
    Kolonjari, F.
    Lindenmaier, R.
    Mittermeier, R. L.
    Daffer, W.
    Fast, H.
    Manney, G.
    Strong, K.
    Walker, K. A.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2010, 3 (01) : 51 - 66
  • [39] FTS: Fourier Transform Spectrometer onboard ASTRO-F/FIS
    Takahashi, H
    Kawada, M
    Murakami, N
    Ozawa, K
    Shibai, H
    Nakagawa, T
    IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 : 191 - 201
  • [40] Line-of-Sight Winds and Doppler Effect Smearing in ACE-FTS Solar Occultation Measurements
    Boone, Chris D.
    Steffen, Johnathan
    Crouse, Jeff
    Bernath, Peter F.
    ATMOSPHERE, 2021, 12 (06)