Extremal families of redundantly rigid graphs in three dimensions

被引:1
|
作者
Jordan, Tibor [1 ,2 ]
Poston, Christopher [3 ]
Roach, Ryan [4 ]
机构
[1] Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
[2] MTA ELTE Egervary Res Grp Combinatorial Optimizat, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
[3] Yale Univ, Dept Math, New Haven, CT USA
[4] Washington Univ, Dept Math & Stat, St Louis, MO USA
基金
匈牙利科学研究基金会;
关键词
Rigid graph; Globally rigid graph; Redundant rigidity; Block and hole graph; Rigid framework;
D O I
10.1016/j.dam.2022.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A rigid graph G is said to be k-vertex (resp. k-edge) rigid in Rd if it remains rigid after the removal of less than k vertices (resp. edges). The definition of k-vertex (resp. k-edge) globally rigid graphs in Rd is similar. We study each of these four versions of redundant (global) rigidity and determine the smallest number of edges in a k-vertex (resp. k-edge) rigid (resp. globally rigid) graph on n vertices in R3 for all positive integers k, except for four special cases, where we provide a close-to-tight bound.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:448 / 464
页数:17
相关论文
共 50 条
  • [41] Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs
    Ke Xiang Xu
    Kinkar Chandra Das
    Xiao Qian Gu
    Acta Mathematica Sinica, English Series, 2020, 36 : 40 - 54
  • [42] ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS
    ERDOS, P
    ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) : 183 - &
  • [43] Extremal embedded graphs
    Yan, Qi
    Jin, Xian'an
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 637 - 652
  • [44] ON SOME EXTREMAL GRAPHS
    MURTY, USR
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (1-2): : 69 - &
  • [45] Extremal graphs for weights
    Discrete Math, 1-3 (5-19):
  • [46] Graphs of extremal weights
    Bollobás, B
    Erdös, P
    ARS COMBINATORIA, 1998, 50 : 225 - 233
  • [47] Extremal Graphs for Homomorphisms
    Cutler, Jonathan
    Radcliffe, A. J.
    JOURNAL OF GRAPH THEORY, 2011, 67 (04) : 261 - 284
  • [48] Extremal graphs for weights
    Bollobás, B
    Erdos, P
    Sarkar, A
    DISCRETE MATHEMATICS, 1999, 200 (1-3) : 5 - 19
  • [49] Elusive extremal graphs
    Grzesik, Andrzej
    Kral, Daniel
    Lovasz, Laszlo Miklos
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 121 (06) : 1685 - 1736
  • [50] MultiPlane: A new framework for drawing graphs in three dimensions
    Hong, SH
    GRAPH DRAWING, 2006, 3843 : 514 - 515