Sample splitting and threshold estimation

被引:1675
|
作者
Hansen, BE [1 ]
机构
[1] Univ Wisconsin, Dept Econ, Madison, WI 53706 USA
关键词
confidence intervals; nonlinear regression; growth regressions; regime shifts;
D O I
10.1111/1468-0262.00124
中图分类号
F [经济];
学科分类号
02 ;
摘要
Threshold models have a wide variety of applications in economics. Direct applications include models of separating and multiple equilibria. Other applications include empirical sample splitting when the sample split is based on a continuously-distributed variable such as firm size. In addition, threshold models may be used as a parsimonious strategy for nonparametric function estimation. For example, the threshold autoregressive model (TAR) is popular in the nonlinear time series literature. Threshold models also emerge as special cases of more complex statistical frameworks, such as mixture models, switching models, Markov switching models, and smooth transition threshold models. It may be important to understand the statistical properties of threshold models as a preliminary step in the development of statistical tools to handle these more complicated structures. Despite the large number of potential applications, the statistical theory of threshold estimation is undeveloped. It is known that threshold estimates are super-consistent, but a distribution theory useful. for testing and inference has yet to be provided. This paper develops a statistical theory for threshold estimation in the regression context. We allow for either cross-section or time series observations. Least squares estimation of the regression parameters is considered. An asymptotic distribution theory for the regression estimates (the threshold and the regression slopes) is developed. It is found that the distribution of the threshold estimate is nonstandard. A method to construct asymptotic confidence intervals is developed by inverting the likelihood ratio statistic. It is shown that this yields asymptotically conservative confidence regions. Monte Carlo simulations are presented to assess the accuracy of the asymptotic approximations. The empirical relevance of the theory is illustrated through an application to the multiple equilibria growth model of Durlauf and Johnson (1995).
引用
收藏
页码:575 / 603
页数:29
相关论文
共 50 条
  • [31] An Investigation of Sample Size Splitting on ATFIND and DIMTEST
    Socha, Alan
    DeMars, Christine E.
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2013, 73 (04) : 631 - 647
  • [32] ESTIMATION OF ANAEROBIC THRESHOLD IN THE PONY
    VALETTE, JP
    BARREY, E
    GARBASI, C
    WOLTER, R
    ANNALES DE ZOOTECHNIE, 1989, 38 (04): : 229 - 236
  • [33] Threshold selection for covariance estimation
    Qiu, Yumou
    Liyanage, Janaka S. S.
    BIOMETRICS, 2019, 75 (03) : 895 - 905
  • [34] An image threshold estimation model
    Wu, Rongteng
    Xie, Xiaohong
    Song, Zeyun
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY, 2010, 7850
  • [35] ESTIMATION OF HERITABILITY FOR THRESHOLD CHARACTERS
    VANVLECK, LD
    JOURNAL OF DAIRY SCIENCE, 1971, 54 (05) : 774 - &
  • [36] THE ESTIMATION OF HEARING THRESHOLD BY ELECTROENCEPHALOGRAPHY
    PERL, ER
    GALAMBOS, R
    GLORIG, A
    THIEDE, FC
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1953, 5 (04): : 501 - 512
  • [37] ON ROBUST ESTIMATION OF THRESHOLD AUTOREGRESSIONS
    CHAN, WS
    CHEUNG, SH
    JOURNAL OF FORECASTING, 1994, 13 (01) : 37 - 49
  • [38] Threshold Regions in Frequency Estimation
    Serbes, Ahmet
    Qaraqe, Khalid A.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (05) : 4850 - 4856
  • [39] Threshold estimation: The state of the art
    Neil A. Macmillan
    Perception & Psychophysics, 2001, 63 : 1277 - 1278
  • [40] ON THE ESTIMATION OF THRESHOLD VALUES - REPLY
    COX, C
    BIOMETRICS, 1989, 45 (04) : 1327 - 1328