A Prediction Model of Hard landing Based on RBF Neural Network with K-means Clustering Algorithm

被引:0
|
作者
Qiao, Xiaoduo [1 ]
Chang, Wenbing [1 ]
Zhou, Shenghan [1 ]
Lu, Xuefeng [1 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
flight data; hard landing; prediction model; RBF neural network; K-means clustering algorithm;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a prediction model for forecasting the hard landing problem. The landing phase has been demonstrated the most dangerous phase in flight cycle for fatal accidents. The landing safety problem has become one of the hot research problems in engineering management field. The study concentrates more on the prediction and advanced warning of hard landing. Firstly, flight data is preprocessed with data slicing method based on flight height and dimension reduction. Subsequently, the radial basis function (RBF) neural network model is established to predict the hard landing. Then, the structure parameters of the model are determined by the K-means clustering algorithm. In the end, compared with Support Vector Machine and BP neural network, the RBF neural network based on K-means clustering algorithm model is adopted and the prediction accuracy of hard landing is better than traditional ways.
引用
收藏
页码:462 / 465
页数:4
相关论文
共 50 条
  • [41] Vector quantization using k-means clustering neural network
    Im, Sio-Kei
    Chan, Ka-Hou
    ELECTRONICS LETTERS, 2023, 59 (07)
  • [42] Chinese text clustering algorithm based k-means
    Yao, Mingyu
    Pi, Dechang
    Cong, Xiangxiang
    2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 : 301 - 307
  • [43] A Credits Based Scheduling Algorithm with K-means Clustering
    Sharma, Vrajesh
    Bala, Manju
    2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 82 - 86
  • [44] A MapReduce-based K-means clustering algorithm
    YiMin Mao
    DeJin Gan
    D. S. Mwakapesa
    Y. A. Nanehkaran
    Tao Tao
    XueYu Huang
    The Journal of Supercomputing, 2022, 78 : 5181 - 5202
  • [45] A Clustering Algorithm Based on Integration of K-Means and PSO
    Atabay, Habibollah Agh
    Sheikhzadeh, Mohammad Javad
    Torshizi, Mehdi
    2016 1ST CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC 2016), 2016, : 59 - 63
  • [46] Feature Selection Algorithm Based on K-means Clustering
    Tang, Xue
    Dong, Min
    Bi, Sheng
    Pei, Maofeng
    Cao, Dan
    Xie, Cheche
    Chi, Sunhuang
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1522 - 1527
  • [47] K-means clustering algorithm based distance concentration
    College of Management, Huazhong University of Science and Technology, Wuhan 430074, China
    不详
    Huazhong Ligong Daxue Xuebao, 2007, 10 (50-52):
  • [48] An Effective K-means Clustering Based SVM Algorithm
    Yao, YuKai
    Liu, Yang
    Li, Zhao
    Chen, XiaoYun
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 1344 - 1348
  • [49] An Abnormal Behavior Clustering Algorithm Based on K-means
    Zhang, Jianbiao
    Yang, Fan
    Tu, Shanshan
    Zhang, Ai
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 535 - 544
  • [50] Chinese Text Clustering Algorithm Based K-Means
    Yao, Mingyu
    Pi, Dechang
    Cong, Xiangxiang
    2011 AASRI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRY APPLICATION (AASRI-AIIA 2011), VOL 1, 2011, : 90 - 93