Relativistic Brownian motion:: From a microscopic binary collision model to the Langevin equation

被引:27
|
作者
Dunkel, Joern [1 ]
Haenggi, Peter [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
D O I
10.1103/PhysRevE.74.051106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
y The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still delta correlated (white noise) but no longer corresponds to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Langevin equation method for the rotational Brownian motion and orientational relaxation in liquids
    Coffey, WT
    Kalmykov, YP
    Titov, SV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (32): : 6789 - 6803
  • [22] Brownian motion on a stochastic harmonic oscillator chain: limitations of the Langevin equation
    Evstigneev, M.
    Al-Haidari, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (05)
  • [23] Brownian motion of classical spins: Anomalous dissipation and generalized Langevin equation
    Bandyopadhyay, Malay
    Jayannavar, A. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (27):
  • [24] MICROSCOPIC THEORY OF BROWNIAN-MOTION .2. NONLINEAR LANGEVIN EQUATIONS
    HYNES, JT
    KAPRAL, R
    WEINBERG, M
    PHYSICA A, 1975, 81 (04): : 485 - 508
  • [25] Derivation of Langevin equation from microscopic theory
    Wakou, J
    Koide, J
    Fukuda, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (1-2) : 164 - 187
  • [26] Microscopic chaos from brownian motion?
    P. Gaspard
    M. E. Briggs
    M. K. Francis
    J. V. Sengers
    R. W. Gammon
    J. R. Dorfman
    R. V. Calabrese
    Nature, 1999, 401 : 876 - 876
  • [27] Microscopic chaos from brownian motion?
    Peter Grassberger
    Thomas Schreiber
    Nature, 1999, 401 : 875 - 876
  • [28] Microscopic chaos from brownian motion?
    C. P. Dettmann
    E. G. D. Cohen
    H. van Beijeren
    Nature, 1999, 401 : 875 - 875
  • [29] THE MULTIPLE COLLISION SOLUTION OF KRAMER EQUATION FOR BROWNIAN-MOTION
    GANAPOL, BD
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1982, 11 (03): : 217 - 231
  • [30] Brownian Motion of a Rayleigh Particle Confined in a Channel: A Generalized Langevin Equation Approach
    Kim, Changho
    Karniadakis, George Em
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) : 1100 - 1125