PENDANT TOTAL DOMINATION NUMBER OF SOME GENERALIZED GRAPHS

被引:1
|
作者
Rani, Jyoti [1 ]
Mehra, Seema [1 ]
机构
[1] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
关键词
DS; TDS; PTDS; PTDN;
D O I
10.17654/0974165822036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given graph G = (V, E), a total dominating set T is called a pendant total dominating set if the subgraph < T > induced by T contains at least one pendant vertex. The cardinality of a pendant total dominating set with smallest cardinal number is known as pendant total domination number of G. In this paper, we determine the pendant total domination number of some generalized graphs.
引用
收藏
页码:19 / 44
页数:26
相关论文
共 50 条
  • [41] On the total domination number of cross products of graphs
    Ei-Zahar, Mohamed
    Gravier, Sylvain
    Klobucar, Antoaneta
    DISCRETE MATHEMATICS, 2008, 308 (10) : 2025 - 2029
  • [42] Graphs with Large Disjunctive Total Domination Number
    Henning, Michael A.
    Naicker, Viroshan
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 255 - 282
  • [43] FAIR TOTAL DOMINATION NUMBER IN CACTUS GRAPHS
    Hajian, Majid
    Rad, Nader Jafari
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 647 - 664
  • [44] On a class of graphs with large total domination number
    Bahadir, Selim
    Gözüpek, Didem
    Discrete Mathematics and Theoretical Computer Science, 2018, 20 (01):
  • [45] ON THE TOTAL k-DOMINATION NUMBER OF GRAPHS
    Kazemi, Adel P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 419 - 426
  • [46] Computing locating-total domination number in some rotationally symmetric graphs
    Raza, Hassan
    Iqbal, Naveed
    Khan, Hamda
    Botmart, Thongchai
    SCIENCE PROGRESS, 2021, 104 (04)
  • [47] ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS
    Bresar, Bostjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Marc, Tilen
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 225 - 247
  • [48] On the Total Domination Number of Cartesian Products of Graphs
    Michael A. Henning
    Douglas F. Rall
    Graphs and Combinatorics, 2005, 21 : 63 - 69
  • [49] Disjunctive Total Domination Subdivision Number of Graphs
    Ciftci, Canan
    Aytac, Vecdi
    FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 15 - 26
  • [50] On the independence transversal total domination number of graphs
    Cabrera Martinez, Abel
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 65 - 73