Generalization Aware Compression of Molecular Trajectories

被引:1
|
作者
Anowar, Md Hasan [1 ]
Shamail, Abdullah [1 ]
Wang, Xiaoyu [2 ]
Trajcevski, Goce [1 ]
Murad, Sohail [3 ]
Jameson, Cynthia J. [4 ]
Khokhar, Ashfaq [1 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Illinois Inst Technol, Chicago, IL 60616 USA
[4] Univ Illinois, Chicago, IL 60607 USA
关键词
Trajectory compression; Molecular dynamics simulation; Drug development; Generalization;
D O I
10.1007/978-3-031-15740-0_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Molecular Dynamics (MD) simulation is often used to study properties of various chemical interactions in domains such as drug development when executing real experimental studies are costly and/or unsafe. Studying trajectories generated from MD simulations provides detailed atomic level location data of every atom in the experiment. The analysis of this data leads to an atomic and molecular level understanding of interactions among the constituents of the system-of-interest, however, the data is extremely large and poses formidable storage and processing challenges in the analyses and querying of associated atom level motion trajectories. We take a first step towards applying domain-specific generalization techniques for trajectory compression algorithms towards reducing the storage requirements and speeding up the processing of within-distance queries over MD simulation data. We demonstrate that this generalization-aware compression, when applied to the dataset used in this case study yields significant efficiency improvements, without sacrificing the effectiveness of within-distance queries for threshold-based detection of molecular events of interest, such as the formation of hydrogen-bonds (H-Bonds).
引用
收藏
页码:270 / 284
页数:15
相关论文
共 50 条
  • [41] Compression Aware Physical Database Design
    Kimura, Hideaki
    Narasayya, Vivek
    Syamala, Manoj
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2011, 4 (10): : 657 - 668
  • [42] Content-Aware GAN Compression
    Liu, Yuchen
    Shu, Zhixin
    Li, Yijun
    Lin, Zhe
    Perazzi, Federico
    Kung, S. Y.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12151 - 12161
  • [43] Compression-aware Graph Computation
    Li, Guohua
    Rao, Weixiong
    UBICOMP'16 ADJUNCT: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2016, : 1295 - 1302
  • [44] Context-Aware Image Compression
    Chan, Jacky C. K.
    Mahjoubfar, Ata
    Chen, Claire L.
    Jalali, Bahram
    PLOS ONE, 2016, 11 (07):
  • [45] Energy aware lossless data compression
    Barr, K
    Asanovic, K
    PROCEEDINGS OF MOBISYS 2003, 2003, : 231 - 244
  • [46] Contrastive Class-aware Adaptation for Domain Generalization
    Chen, Tianle
    Baktashmotlagh, Mahsa
    Salzmann, Mathieu
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4871 - 4876
  • [47] Generalization of the Rutherford Formula and Synthesis of Trajectories with Gravity Assist Maneuvers
    Golubev, Yu. F.
    Grushevskii, A. V.
    Koryanov, V. V.
    Tuchin, A. G.
    Tuchin, D. A.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2023, 62 (03) : 556 - 568
  • [48] Generalization of electrostatic lens characteristics using the Picht ray trajectories
    Kawanami, Y
    Ishitani, T
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (04): : 1400 - 1405
  • [49] Generalization of ILC for fixed order reference trajectories using interpolation
    Bolderman, Max
    Erens, Gerben
    Lazar, Mircea
    Butler, Hans
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON ADVANCED MOTION CONTROL (AMC), 2022, : 294 - 299
  • [50] Generalization of the Rutherford Formula and Synthesis of Trajectories with Gravity Assist Maneuvers
    Yu. F. Golubev
    A. V. Grushevskii
    V. V. Koryanov
    A. G. Tuchin
    D. A. Tuchin
    Journal of Computer and Systems Sciences International, 2023, 62 : 556 - 568