Accuracy of low-field MRI on meniscal tears

被引:4
|
作者
Chen, H. N. [1 ]
Dong, Q. R. [1 ]
Wang, Y. [1 ]
机构
[1] Soochow Univ, Affiliated Hosp 2, Dept Orthopaed, Suzhou, Peoples R China
关键词
Meniscus; Tibia; MRI; Arthroscopy; Low field Intensity; KNEE MRI; ARTHROSCOPY; DIAGNOSIS; INJURIES; SYSTEM;
D O I
10.4238/2014.June.9.12
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study aimed to verify the accuracy of low-field-intensity magnetic resonance imaging (MRI) in diagnosing meniscus tears. A total of 171 patients were examined through low-field-intensity MRI to detect meniscus injuries. These patients were then diagnosed through arthroscopy. Examination results were recorded and compared. The accuracy of the diagnosis for internal and external meniscus tears through low-field-intensity MRI was 95.91% and 95.91%, respectively, the sensitivities were 95.60% and 96.47%, respectively, and the specificities were 96.25% and 95.35%, respectively. Low-field-intensity MRI is an accurate and cost-effective method for diagnosing meniscus tears.
引用
收藏
页码:4267 / 4271
页数:5
相关论文
共 50 条
  • [41] The deep route to low-field MRI with high potential
    Patricia M. Johnson
    Yvonne W. Lui
    Nature, 2023, 623 : 700 - 701
  • [42] Pre-Processing of Low-Field Brain MRI
    Ishak, N. F.
    Logeswaran, R.
    Tan, W. H.
    PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS (CIMMACS '08): RECENT ADVANCES IN COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, 2008, : 41 - 46
  • [43] MRI in rheumatoid arthritis of the hands: Comparison of high-field and low-field MRI
    Taouli, BA
    Zaim, S
    Lynch, JA
    Peterfy, CG
    Stork, A
    Fan, B
    RADIOLOGY, 2001, 221 : 523 - 523
  • [44] MR accuracy and arthroscopic incidence of meniscal radial tears
    Thomas Magee
    Marc Shapiro
    David Williams
    Skeletal Radiology, 2002, 31 : 686 - 689
  • [45] Accuracy of SPECT bone scintigraphy in diagnosis of meniscal tears
    Saghari, M.
    Moslehi, M.
    Esmaeili, J.
    Tahmasebi, M. N.
    Radmehr, A.
    Eftekhari, M.
    Fard-Esfahani, A.
    Beiki, D.
    Fallahi, B.
    Gholamrezanezhad, A.
    IRANIAN JOURNAL OF NUCLEAR MEDICINE, 2005, 13 (01): : 1 - 6
  • [46] Low-field MRI: A report on the 2022 ISMRM workshop
    Campbell-Washburn, Adrienne E.
    Keenan, Kathryn E.
    Hu, Peng
    Mugler, John P., III
    Nayak, Krishna S.
    Webb, Andrew G.
    Obungoloch, Johnes
    Sheth, Kevin N.
    Hennig, Juergen
    Rosen, Matthew S.
    Salameh, Najat
    Sodickson, Daniel K.
    Stein, Joel M.
    Marques, Jose P.
    Simonetti, Orlando P.
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (04) : 1682 - 1694
  • [47] Deep learning for fast low-field MRI acquisitions
    Reina Ayde
    Tobias Senft
    Najat Salameh
    Mathieu Sarracanie
    Scientific Reports, 12
  • [48] Medial meniscal root tears and meniscal extrusion transverse length ratios on MRI
    Park, H-J
    Kim, S. S.
    Lee, S-Y
    Choi, Y-J
    Chung, E-C
    Rho, M-H
    Kwag, H-J
    BRITISH JOURNAL OF RADIOLOGY, 2012, 85 (1019): : E1032 - E1037
  • [49] MRI of the equine digit with a dedicated low-field magnet
    Choquet, P
    Sick, H
    Constantinesco, A
    VETERINARY RECORD, 2000, 146 (21) : 616 - 617
  • [50] Deep learning for fast low-field MRI acquisitions
    Ayde, Reina
    Senft, Tobias
    Salameh, Najat
    Sarracanie, Mathieu
    SCIENTIFIC REPORTS, 2022, 12 (01)