On the oscillation of certain second order nonlinear dynamic equations

被引:29
|
作者
Grace, Said R. [2 ]
Agarwal, Ravi P. [1 ]
Kaymakcalan, Billur [3 ]
Sae-Jie, Wichuta [4 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Cairo Univ, Fac Engn, Dept Engn Math, Giza 12221, Egypt
[3] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
[4] Mahidol Univ, Fac Sci, Dept Math, Bangkok 10400, Thailand
关键词
Oscillation; Nonoscillation; Dynamic equation; Half-linear; TIME SCALES; CRITERIA;
D O I
10.1016/j.mcm.2008.12.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We establish some new oscillation criteria for solutions to the second order nonlinear dynamic equation (a(x(Delta))(alpha))(Delta) (t) + q(t)x(beta) (t) = 0 on an arbitrary time scale T, where alpha and beta are ratios of positive odd integers, a and q are positive rd-continuous functions on T. The results are obtained when integral(infinity) a(-1/alpha)(s) Delta s < infinity or integral(infinity) a(-1/alpha)(s) Delta s = infinity. These criteria unify and extend known results for the corresponding half-linear and nonlinear differential and difference equations. Some of our results are new even in the continuous and discrete cases. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 50 条
  • [31] Oscillation criteria for a certain second-order nonlinear perturbed differential equations
    Pakize Temtek
    Aydin Tiryaki
    Journal of Inequalities and Applications, 2013
  • [32] Oscillation results for nonlinear second-order damped dynamic equations
    Wang, Jingjing
    EI-Sheikh, M. M. A.
    Sallam, R. A.
    Elimy, D. I.
    Li, Tongxing
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 877 - 883
  • [33] Nonlinear oscillation of second-order dynamic equations on time scales
    Anderson, Douglas R.
    Zafer, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (10) : 1591 - 1597
  • [34] OSCILLATION FOR NONLINEAR SECOND-ORDER DYNAMIC EQUATIONS ON TIME SCALES
    Xu Yancong College of Science Hangzhou Normal University Hangzhou Zhu Deming Dept of Math East China Normal University Shanghai
    Annals of Differential Equations, 2008, 24 (04) : 457 - 469
  • [35] Forced Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales
    Huang, Mugen
    Feng, Weizhen
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2008, (36) : 1 - 13
  • [36] Oscillation criteria for second-order nonlinear delay dynamic equations
    Erbe, L.
    Peterson, A.
    Saker, S. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 505 - 522
  • [37] OSCILLATION FOR NONLINEAR SECOND-ORDER DYNAMIC EQUATIONS ON TIME SCALES
    Xu Yancong (College of Science
    Annals of Applied Mathematics, 2008, (04) : 457 - 469
  • [38] OSCILLATION OF SECOND-ORDER NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES
    Huang, Hao
    Wang, Qi-Ru
    DYNAMIC SYSTEMS AND APPLICATIONS, 2008, 17 (3-4): : 551 - 570
  • [39] Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order
    Hassan, Taher S.
    Sun, Yuangong
    Menaem, Amir Abdel
    MATHEMATICS, 2020, 8 (11) : 1 - 19
  • [40] Comparison and oscillatory behavior for certain second order nonlinear dynamic equations
    Grace S.R.
    Agarwal R.P.
    Pinelas S.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 525 - 536