Modeling of biological tissues with anisotropic hyperelastic laws - Theoretical study and finite element analysis.

被引:11
|
作者
Peyraut, Francois [1 ]
Renaud, Christine [2 ]
Labed, Nadia [1 ]
Feng, Zhi-Qiang [2 ]
机构
[1] Univ Technol Belfort Montbeliard, Lab M3M, F-90010 Belfort, France
[2] Univ Evry Val dEssonne, Lab LME Evry, F-91020 Evry, France
来源
COMPTES RENDUS MECANIQUE | 2009年 / 337卷 / 02期
关键词
Biomechanics; Anisotropic hyperelasticity; HGO model; Finite element; FRAMEWORK;
D O I
10.1016/j.crme.2009.03.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Modeling of biological tissues with anisotropic hyperelastic laws - Theoretical study and finite element analysis. To determine the strain and stress in the biological soft tissues such as ligaments, tendons or arterial walls, anisotropic hyperelastic constitutive laws are often used in the context of finite element analysis [J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng. 135 (1996) 107-128]. In the present paper, we propose to realize such a study together with a analytical study. This study allows for the understanding of the reason why it does not exist a one-to-one correspondence between the principal stretch lambda(2) and the fourth invariant of the dilatation tensor for the material model proposed by Holzapfel, Gasser and Ogden [G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity 61 (2000) 1-48; T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface 3 (2006) 15-35]. In fact, the relationship becomes non-bijective when the angle between the collagen fibers and the circumferential direction is greater that a critical angle of 54.73 degrees. Importance of this critical angle was also discussed by Guo et al. (2006). To cite this article: E Peyraut et al., C R. Mecanique 337 (2009). (c) 2009 Publie par Elsevier Masson SAS pour I'Academie des sciences.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [41] THE ANALYSIS OF INCOMPRESSIBLE HYPERELASTIC BODIES BY THE FINITE-ELEMENT METHOD
    DUFFETT, G
    REDDY, BD
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1983, 41 (01) : 105 - 120
  • [42] LIMITATIONS OF THE FINITE ELEMENT METHOD IN STRUCTURAL ANALYSIS.
    Hinton, E.
    Davies, J.D.
    Build International (English Edition), 1973, 6 (03): : 299 - 319
  • [43] NEUMANN EXPANSION FOR STOCHASTIC FINITE ELEMENT ANALYSIS.
    Yamazaki, Fumio
    Shinozuka, Masanobu
    Dasgupta, Gautam
    Journal of Engineering Mechanics, 1988, 114 (08) : 1335 - 1354
  • [44] Stress distribution in dentin by finite element analysis.
    Vasconcellos, WA
    Campos, TM
    Cimini, CA
    Albuquerque, RC
    JOURNAL OF DENTAL RESEARCH, 2002, 81 : B126 - B126
  • [45] A STRUT FINITE ELEMENT FOR EXACT INCOMPRESSIBLE ISOTROPIC HYPERELASTIC ANALYSIS
    Arcaro, Vinicius F.
    Ferrazzo, Pietro C.
    SLOVAK JOURNAL OF CIVIL ENGINEERING, 2018, 26 (01) : 1 - 9
  • [46] Anisotropic creep modeling of coated textile membrane using finite element analysis
    Kim, Kyoung Ju
    Yu, Woong-Ryeol
    Kim, Min Sun
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (7-8) : 1688 - 1696
  • [47] Finite element analysis of compressible transversely isotropic hyperelastic shells
    Beheshti, Alireza
    Ansari, Reza
    ACTA MECHANICA, 2023, 234 (07) : 3061 - 3079
  • [48] RUBBER ELASTICITY MODELS FOR FINITE ELEMENT ANALYSIS.
    Tabaddor, Farhad
    1600, (26): : 1 - 2
  • [49] BASIC COURSE IN FINITE-ELEMENT ANALYSIS.
    Rieger, Neville F.
    Steele, Jeffrey M.
    Machine Design, 1981, 53 (16) : 153 - 157
  • [50] A simplified approach to finite element modeling of anisotropic screens
    Krishnamurthy, Sujay R.
    Koves, William J.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2007, VOL 3: DESIGN AND ANALYSIS, 2007, : 155 - 160