Modeling of biological tissues with anisotropic hyperelastic laws - Theoretical study and finite element analysis.

被引:11
|
作者
Peyraut, Francois [1 ]
Renaud, Christine [2 ]
Labed, Nadia [1 ]
Feng, Zhi-Qiang [2 ]
机构
[1] Univ Technol Belfort Montbeliard, Lab M3M, F-90010 Belfort, France
[2] Univ Evry Val dEssonne, Lab LME Evry, F-91020 Evry, France
来源
COMPTES RENDUS MECANIQUE | 2009年 / 337卷 / 02期
关键词
Biomechanics; Anisotropic hyperelasticity; HGO model; Finite element; FRAMEWORK;
D O I
10.1016/j.crme.2009.03.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Modeling of biological tissues with anisotropic hyperelastic laws - Theoretical study and finite element analysis. To determine the strain and stress in the biological soft tissues such as ligaments, tendons or arterial walls, anisotropic hyperelastic constitutive laws are often used in the context of finite element analysis [J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng. 135 (1996) 107-128]. In the present paper, we propose to realize such a study together with a analytical study. This study allows for the understanding of the reason why it does not exist a one-to-one correspondence between the principal stretch lambda(2) and the fourth invariant of the dilatation tensor for the material model proposed by Holzapfel, Gasser and Ogden [G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity 61 (2000) 1-48; T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface 3 (2006) 15-35]. In fact, the relationship becomes non-bijective when the angle between the collagen fibers and the circumferential direction is greater that a critical angle of 54.73 degrees. Importance of this critical angle was also discussed by Guo et al. (2006). To cite this article: E Peyraut et al., C R. Mecanique 337 (2009). (c) 2009 Publie par Elsevier Masson SAS pour I'Academie des sciences.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [1] Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes
    Einstein, D.R.
    Reinhall, P.
    Nicosia, M.
    Cochran, R.P.
    Kunzelman, K.
    Computer Methods in Biomechanics and Biomedical Engineering, 2003, 6 (01) : 33 - 44
  • [2] Anisotropic hyperelastic behavior of soft biological tissues
    Chen, Z. -W.
    Joli, P.
    Feng, Z. -Q.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2015, 18 (13) : 1436 - 1444
  • [3] STABILITY AND VIBRATIONS OF COMPRESSIBLE, HYPERELASTIC, RECTANGULAR COLUMNS: A FINITE ELEMENT ANALYSIS.
    Tokdemir, Turgut
    Ertepinar, Aybar
    Bulletin of the Technical University of Istanbul, 1986, 39 (02): : 299 - 238
  • [4] On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials
    Gueltekin, Osman
    Dal, Husnu
    Holzapfel, Gerhard A.
    COMPUTATIONAL MECHANICS, 2019, 63 (03) : 443 - 453
  • [5] On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials
    Osman Gültekin
    Hüsnü Dal
    Gerhard A. Holzapfel
    Computational Mechanics, 2019, 63 : 443 - 453
  • [6] Role of anisotropic invariants in numerically modeling soft biological tissues as transversely isotropic hyperelastic materials: A comparative study
    Castillo-Mendez, Carlos
    Ortiz, Armando
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 138
  • [7] Fiber distributed hyperelastic modeling of biological tissues
    Pandolfi, Anna
    Vasta, Marcello
    MECHANICS OF MATERIALS, 2012, 44 : 151 - 162
  • [8] Theoretical modeling and biological laws
    Cooper, G
    PHILOSOPHY OF SCIENCE, 1996, 63 (03) : S28 - S35
  • [9] An Anisotropic Hyperelastic Model for Human Skin: Finite Element Modeling, Identification of Parameters, Mechanical Tests
    Alliliche, Wael
    Renaud, Christine
    Cros, Jean-Michel
    Feng, Zhi-Qiang
    COMPUTER METHODS, IMAGING AND VISUALIZATION IN BIOMECHANICS AND BIOMEDICAL ENGINEERING II, 2023, 38 : 271 - 280
  • [10] Finite element analysis of hyperelastic components
    Univ of Central Florida, Orlando, United States
    Appl Mech Rev, 5 (303-320):