Mapping crop ground cover using airborne multispectral digital imagery

被引:16
|
作者
Rajan, Nithya [1 ]
Maas, Stephan J. [1 ]
机构
[1] Texas Tech Univ, Dept Plant & Soil Sci, Lubbock, TX 79415 USA
关键词
Ground cover; Airborne remote sensing; Perpendicular vegetation index (PVI); Soil line; SPECTRAL-BIOPHYSICAL DATA; MULTISITE ANALYSES;
D O I
10.1007/s11119-009-9116-2
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Empirical relationships between remotely sensed vegetation indices and canopy density information, such as leaf area index or ground cover (GC), are commonly used to derive spatial information in many precision farming operations. In this study, we modified an existing methodology that does not depend on empirical relationships and extended it to derive crop GC from high resolution aerial imagery. Using this procedure, GC is calculated for every pixel in the aerial imagery by dividing the perpendicular vegetation index (PVI) of each pixel by the PVI of full canopy. The study was conducted during the summer growing seasons of 2007 and 2008, and involves airborne and ground truth data from 13 agricultural fields in the Southern High Plains of the USA. The results show that the method described in this study can be used to estimate crop GC from high-resolution aerial images with an overall accuracy within 3% of their true values.
引用
收藏
页码:304 / 318
页数:15
相关论文
共 50 条
  • [31] Estimating hourly crop ET using a two-source energy balance model and multispectral airborne imagery
    José Luis Chávez
    P. H. Gowda
    T. A. Howell
    C. M. U. Neale
    K. S. Copeland
    Irrigation Science, 2009, 28 : 79 - 91
  • [32] Estimating hourly crop ET using a two-source energy balance model and multispectral airborne imagery
    Chavez, Jose Luis
    Gowda, P. H.
    Howell, T. A.
    Neale, C. M. U.
    Copeland, K. S.
    IRRIGATION SCIENCE, 2009, 28 (01) : 79 - 91
  • [33] MAPPING URBAN TREE CANOPY COVER USING FUSED AIRBORNE LIDAR AND SATELLITE IMAGERY DATA
    Parmehr, Ebadat G.
    Amati, Marco
    Fraser, Clive S.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 181 - 186
  • [34] Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning
    Codemo, Anna
    Pianegonda, Angelica
    Ciolli, Marco
    Favargiotti, Sara
    Albatici, Rossano
    SUSTAINABILITY, 2022, 14 (10)
  • [35] Evaluation of cotton defoliation strategies using airborne multispectral imagery
    Yang, C
    Greenberg, SM
    Everitt, JH
    Sappington, TW
    Norman, JW
    TRANSACTIONS OF THE ASAE, 2003, 46 (03): : 869 - 876
  • [36] EVALUATING THE POTENTIAL OF MULTISPECTRAL AIRBORNE LIDAR FOR TOPOGRAPHIC MAPPING AND LAND COVER CLASSIFICATION
    Wichmann, V.
    Bremer, M.
    Lindenberger, J.
    Rutzinger, M.
    Georges, C.
    Petrini-Monteferri, F.
    ISPRS GEOSPATIAL WEEK 2015, 2015, II-3 (W5): : 113 - 119
  • [37] Mapping of hailstorm and strong wind damaged crop areas using LAI estimated from multispectral imagery
    Furlanetto, J.
    Dal Ferro, N.
    Briffaut, F.
    Carotta, L.
    Polese, R.
    Dramis, A.
    Miele, C.
    Persichetti, A.
    Nicoli, L.
    Morari, F.
    PRECISION AGRICULTURE'21, 2021, : 315 - 321
  • [38] Early regeneration conifer identification and competition cover assessment using airborne digital camera imagery
    Haddow, KA
    King, DJ
    Pouliot, DA
    Pitt, DG
    Bell, FW
    FORESTRY CHRONICLE, 2000, 76 (06): : 915 - 928
  • [39] Spinach Yield Mapping Using Multispectral UAV Imagery
    Jiang, Xintong
    Sun, Shangpeng
    Adamchuk, Viacheslav
    Weisman, Gil
    Ramsay, Patrick
    Rincon, Andres Rello
    SMART AGRICULTURAL TECHNOLOGY, 2024, 7
  • [40] Crop classification using temporal stacks of multispectral satellite imagery
    Moody, Daniela I.
    Brumby, Steven P.
    Chartrand, Rick
    Keisler, Ryan
    Longbotham, Nathan
    Mertes, Carly
    Skillman, Samuel W.
    Warren, Michael S.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIII, 2017, 10198