Well-posedness of the stochastic KdV-Burgers equation

被引:7
|
作者
Richards, Geordie [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Well-posedness; Stochastic PDEs; White noise invariance; NONLINEAR SCHRODINGER-EQUATION; DATA CAUCHY-THEORY; DE-VRIES EQUATION; INVARIANT-MEASURES; DRIVEN;
D O I
10.1016/j.spa.2013.12.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We are interested in rigorously proving the invariance of white noise under the flow of a stochastic KdV Burgers equation. This paper establishes a result in this direction. After smoothing the additive noise (by a fractional spatial derivative), we establish (almost sure) local well-posedness of the stochastic KdV Burgers equation with white noise as initial data. Next we observe that spatial white noise is invariant under the projection of this system to the first N > 0 modes of the trigonometric basis. Finally, we prove a global well-posedness result under an additional smoothing of the noise. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1627 / 1647
页数:21
相关论文
共 50 条
  • [11] Well-posedness and ill-posedness of KdV equation with higher dispersion
    Li, Yin
    Yan, Wei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 647 - 658
  • [12] KdV-BURGERS EQUATION MODELLING OF TURBULENCE
    刘式达
    刘式适
    ScienceinChina,SerA., 1992, Ser.A.1992 (05) : 576 - 586
  • [13] Well-posedness of the generalized Burgers equation on a finite interval
    Li, Jing
    Zhang, Bing-Yu
    Zhang, Zhixiong
    APPLICABLE ANALYSIS, 2019, 98 (16) : 2802 - 2826
  • [14] On well-posedness for some dispersive perturbations of Burgers' equation
    Molinet, Luc
    Pilod, Didier
    Vento, Stephane
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (07): : 1719 - 1756
  • [15] KDV-BURGERS EQUATION MODELING OF TURBULENCE
    LIU, SD
    LIU, SK
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1992, 35 (05): : 576 - 586
  • [16] KdV-BURGERS EQUATION MODELLING OF TURBULENCE
    刘式达
    刘式适
    Science China Mathematics, 1992, (05) : 576 - 586
  • [17] Well-posedness of stochastic KdV-BO equation driven by fractional Brownian motion
    Bian, Baojun
    Wang, Guolian
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 657 - 669
  • [18] Strange Attractor of KdV-Burgers Equation
    盛平兴
    Journal of Shanghai University, 1997, (02) : 91 - 94
  • [19] Modified approximation for the KdV-Burgers equation
    Ismail, Hassan N. A.
    Rageh, Tamer M.
    Salem, Ghada S. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 58 - 62
  • [20] HETEROCLINIC ORBIT ON THE KDV-BURGERS EQUATION AND FISHER EQUATION
    LIU, SK
    LIU, SD
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1991, 16 (04) : 497 - 500