With the availability of hundreds and soon thousands of complete genomes, the construction of genome-scale metabolic models for these organisms has attracted much attention. Manual work still dominates the process of model generation, however, and leads to the huge gap between the number of complete genomes and genome-scale metabolic models. The challenge in constructing genome-scale models from existing databases is that usually such a directly extracted model is incomplete and contains network holes. Network holes occur when a network is disconnected and certain metabolites cannot be produced or consumed. In order to construct a valid metabolic model, network holes need to be filled by introducing candidate reactions into the network. As a step toward the high-throughput generation of biological models, we propose a Bayesian approach to improving draft genome-scale metabolic models. A collection of 23 types of biological and topological evidence is extracted from the SEED [1), KEGG [2], and BiGG [3] databases. Based on this evidence, we create 23 individual predictors using Bayesian approaches. To combine these individual predictors and unify their predictive results, we build an ensemble of individual predictors on majority vote and four classifiers: naive Bayes classifier, Bayesian network, multilayer perceptron network and AdaBoost. A set of experiments is performed to train and test individual predictors and integrative mechanisms of single predictors and to evaluate the performance of our approach.
机构:
Columbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USAColumbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USA
Repin, Mikhail
Turner, Helen C.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USAColumbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USA
Turner, Helen C.
Garty, Guy
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USAColumbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USA
Garty, Guy
Brenner, David J.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USAColumbia Univ, Med Ctr, Ctr High Throughput Minimally Invas Radiat Biodos, New York, NY 10032 USA
机构:
Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Univ Bourgogne Franche Comte, Lab ImViA, F-21078 Dijon, FranceChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Wang, Jinyang
Bourennane, El-Bay
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne Franche Comte, Lab ImViA, F-21078 Dijon, FranceChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Bourennane, El-Bay
Madani, Mahdi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne Franche Comte, Lab ImViA, F-21078 Dijon, FranceChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Madani, Mahdi
Wang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Wang, Jun
Li, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Li, Chao
Tai, Yupeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Tai, Yupeng
Wang, Longxu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Wang, Longxu
Yang, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Burgundy, Lab Res Learning & Dev UMR CNRS 5022, F-21000 Dijon, FranceChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Yang, Fan
Wang, Haibin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China