Numerical solution of modified Black-Scholes equation pricing stock options with discrete dividend

被引:15
|
作者
Company, R. [1 ]
Gonzalez, A. L. [1 ]
Jodar, L. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
关键词
modified Black-Scholes equation; Mellin transform; numerical quadrature;
D O I
10.1016/j.mcm.2006.03.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with the numerical solution of the modified Black-Scholes equation modelling the valuation of stock options with discrete dividend payments. By using a delta-defining sequence of the involved generalized Dirac delta function and applying the Mellin transform, an integral formula for the solution is obtained. Then, numerical quadrature approximations and illustrative examples are given. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1058 / 1068
页数:11
相关论文
共 50 条
  • [41] Numerical simulation of Black-Scholes model for American options
    Khaliq, AQM
    Voss, DA
    Kazmi, SK
    IEEE INMIC 2001: IEEE INTERNATIONAL MULTI TOPIC CONFERENCE 2001, PROCEEDINGS: TECHNOLOGY FOR THE 21ST CENTURY, 2001, : 118 - 123
  • [42] ANALYTICALLY PRICING EUROPEAN-STYLE OPTIONS UNDER THE MODIFIED BLACK-SCHOLES EQUATION WITH A SPATIAL-FRACTIONAL DERIVATIVE
    Chen, Wenting
    Xu, Xiang
    Zhu, Song-Ping
    QUARTERLY OF APPLIED MATHEMATICS, 2014, 72 (03) : 597 - 611
  • [43] A Comparison between Analytic and Numerical Solution of Linear Black-Scholes Equation Governing Option Pricing: Using BANKNIFTY
    Kumar, Madhu Sudan
    Das, Shom Prasad
    Reza, Motahar
    PROCEEDINGS OF THE 2012 WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES, 2012, : 437 - 441
  • [44] Pricing of basket options in subdiffusive fractional Black-Scholes model
    Karipova, Gulnur
    Magdziarz, Marcin
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 245 - 253
  • [45] Numerical solution of generalized Black-Scholes model
    Rao, S. Chandra Sekhara
    Manisha
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 : 401 - 421
  • [46] Fractional model and solution for the Black-Scholes equation
    Duan, Jun-Sheng
    Lu, Lei
    Chen, Lian
    An, Yu-Lian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) : 697 - 704
  • [47] On the numerical solution of nonlinear Black-Scholes equations
    Ankudinova, Julia
    Ehrhardt, Matthias
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (03) : 799 - 812
  • [48] Analytically pricing double barrier options based on a time-fractional Black-Scholes equation
    Chen, Wenting
    Xu, Xiang
    Zhu, Song-Ping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (12) : 1407 - 1419
  • [49] PRICING EUROPEAN CURRENCY OPTIONS - A COMPARISON OF THE MODIFIED BLACK-SCHOLES MODEL AND A RANDOM VARIANCE MODEL
    CHESNEY, M
    SCOTT, L
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1989, 24 (03) : 267 - 284
  • [50] Numerical Solution of Fractional Black-Scholes Equation by Using the Multivariate Pade Approximation
    Ozdemir, N.
    Yavuz, M.
    ACTA PHYSICA POLONICA A, 2017, 132 (03) : 1050 - 1053