Numerical solution of modified Black-Scholes equation pricing stock options with discrete dividend

被引:15
|
作者
Company, R. [1 ]
Gonzalez, A. L. [1 ]
Jodar, L. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
关键词
modified Black-Scholes equation; Mellin transform; numerical quadrature;
D O I
10.1016/j.mcm.2006.03.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with the numerical solution of the modified Black-Scholes equation modelling the valuation of stock options with discrete dividend payments. By using a delta-defining sequence of the involved generalized Dirac delta function and applying the Mellin transform, an integral formula for the solution is obtained. Then, numerical quadrature approximations and illustrative examples are given. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1058 / 1068
页数:11
相关论文
共 50 条
  • [1] SOLUTION OF BLACK-SCHOLES EQUATION FOR STANDARD POWER EUROPEAN OPTIONS WITH DISCRETE DIVIDEND PAYMENT
    Ghevariya, S. J.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2023, 11 (04): : 29 - 39
  • [2] A Robust Numerical Simulation of a Fractional Black-Scholes Equation for Pricing American Options
    Nuugulu, S. M.
    Gideon, F.
    Patidar, K. C.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
  • [3] PRICING STOCK OPTIONS USING BLACK-SCHOLES AND FUZZY SETS
    Buckley, James J.
    Eslami, Esfandiar
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2008, 4 (02) : 165 - 176
  • [4] Solution of the Black-Scholes Equation for Pricing of Barrier Option
    Dehghan, Mehdi
    Pourghanbar, Somayeh
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (05): : 289 - 296
  • [5] Black-Scholes options pricing model
    Slacálek, J
    FINANCE A UVER, 2000, 50 (02): : 78 - 96
  • [6] A Note on Black-Scholes Pricing Model for Theoretical Values of Stock Options
    Edeki, S. O.
    Ugbebor, O. O.
    Owoloko, E. A.
    PROGRESS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING PROCEEDINGS, 2016, 1705
  • [7] On modified Black-Scholes equation
    Ahmed, E
    Abdusalam, HA
    CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 583 - 587
  • [8] A fast numerical method for the Black-Scholes equation of American options
    Han, H
    Wu, XN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) : 2081 - 2095
  • [9] On the numerical solution of time fractional Black-Scholes equation
    Sarboland, M.
    Aminataei, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (09) : 1736 - 1753
  • [10] Exact and numerical solution of Black-Scholes matrix equation
    Cortés, JC
    Jódar, L
    Sala, R
    Sevilla-Peris, P
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (03) : 607 - 613