A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Clustering

被引:99
|
作者
Boutemedjet, Sabri [1 ]
Bouguila, Nizar [2 ]
Ziou, Djemel [1 ]
机构
[1] Univ Sherbrooke, Dept Informat, Sherbrooke, PQ J1K 2R1, Canada
[2] Concordia Univ, Concordia Inst Informat Engn CIISE, Montreal, PQ H3G 1T7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Unsupervised learning; mixture models; feature selection; dimensionality reduction; generalized Dirichlet mixture; EM; MML; information theory; object image categorization; STATISTICAL PATTERN-RECOGNITION; DIRICHLET MIXTURE MODEL; UNSUPERVISED SELECTION;
D O I
10.1109/TPAMI.2008.155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an unsupervised approach for feature selection and extraction in mixtures of generalized Dirichlet (GD) distributions. Our method defines a new mixture model that is able to extract independent and non-Gaussian features without loss of accuracy. The proposed model is learned using the Expectation-Maximization algorithm by minimizing the message length of the data set. Experimental results show the merits of the proposed methodology in the categorization of object images.
引用
收藏
页码:1429 / 1443
页数:15
相关论文
共 50 条
  • [11] Hybrid fast unsupervised feature selection for high-dimensional data
    Manbari, Zhaleh
    AkhlaghianTab, Fardin
    Salavati, Chiman
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 124 : 97 - 118
  • [12] A GA-based Feature Selection for High-dimensional Data Clustering
    Sun, Mei
    Xiong, Langhuan
    Sun, Haojun
    Jiang, Dazhi
    THIRD INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING, 2009, : 769 - 772
  • [13] Clustering-based hybrid feature selection approach for high dimensional microarray data
    Babu, Samson Anosh P.
    Annavarapu, Chandra Sekhara Rao
    Dara, Suresh
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 213
  • [14] Feature selection for high-dimensional data
    Bolón-Canedo V.
    Sánchez-Maroño N.
    Alonso-Betanzos A.
    Progress in Artificial Intelligence, 2016, 5 (2) : 65 - 75
  • [15] Feature selection for high-dimensional data
    Destrero A.
    Mosci S.
    De Mol C.
    Verri A.
    Odone F.
    Computational Management Science, 2009, 6 (1) : 25 - 40
  • [16] A Light Causal Feature Selection Approach to High-Dimensional Data
    Ling, Zhaolong
    Li, Ying
    Zhang, Yiwen
    Yu, Kui
    Zhou, Peng
    Li, Bo
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7639 - 7650
  • [17] Multistage feature selection approach for high-dimensional cancer data
    Alkuhlani, Alhasan
    Nassef, Mohammad
    Farag, Ibrahim
    SOFT COMPUTING, 2017, 21 (22) : 6895 - 6906
  • [18] Simultaneous high-dimensional clustering and feature selection using asymmetric Gaussian mixture models
    Elguebaly, Tarek
    Bouguila, Nizar
    IMAGE AND VISION COMPUTING, 2015, 34 : 27 - 41
  • [19] Multistage feature selection approach for high-dimensional cancer data
    Alhasan Alkuhlani
    Mohammad Nassef
    Ibrahim Farag
    Soft Computing, 2017, 21 : 6895 - 6906
  • [20] In search of non-Gaussian components of a high-dimensional distribution
    Blanchard, G
    Kawanabe, M
    Sugiyama, M
    Spokoiny, V
    Müller, KR
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 247 - 282