Design of Low Gain Avalanche Detectors (LGAD) with 400 keV ion implantation energy for multiplication layer fabrication

被引:11
|
作者
Wu, K. [1 ,2 ]
Zhao, M. [1 ,3 ]
Yang, T. [1 ,2 ]
da Costa, Joao Guimaraes [1 ]
Liang, Z. [1 ,3 ]
Shi, X. [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, 19B Yuquan Rd, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] State Key Lab Particle Detect & Elect, 19B Yuquan Rd, Beijing 100049, Peoples R China
关键词
LGAD; Silicon sensors; TCAD simulation; High breakdown voltage; Gain factor; Implantation energy; TECHNOLOGY;
D O I
10.1016/j.nima.2020.164558
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Low Gain Avalanche Detectors (LGAD) are silicon sensors that can achieve a time resolution of better than 20 ps. The ATLAS and CMS experiments are designing LGAD detectors to address the pile-up challenge at the High Luminosity Large Hadron Collider (HL-LHC). The Institute of High Energy Physics (IHEP) has recently developed two versions of LGAD sensors. The LGAD sensors were designed using Technology Computer-Aided Design (TCAD) simulations and optimized to obtain high breakdown voltage and a suitable gain. The n-type Junction Termination Extension (N-JTE) and p-type gain layer are two critical structures for LGAD sensors that were investigated. IHEP has tuned the fabrication process of two foundries to obtain the most promising design. The first version of the IHEP LGAD sensor, with a gain higher than six and breakdown voltage higher than 400 V, was submitted to Tianjin Zhonghuan Semiconductor Company for fabrication. The second version of the LGAD sensor benefits from the higher implantation energy available at the Institute of Microelectronics (IME) to reach a gain higher than ten and breakdown voltage higher than 420 V.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Characterization of low-energy (100 eV 10 keV) boron ion implantation
    Collart, EJH
    Weemers, K
    Gravesteijn, DJ
    van Berkum, JGM
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (01): : 280 - 285
  • [22] Fabrication of metal nanoparticles in sapphire by low-energy ion implantation
    Stepanov, AL
    Khaibullin, IB
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2005, 9 (02) : 109 - 129
  • [23] Design and development of Low Gain Avalanche Detectors using Teledyne e2v process
    Villani, Giulio
    Allport, P.
    Ball, K.
    Bell, R.
    Bortoletto, D.
    Gonella, L.
    Hynds, D.
    Jordan, D.
    Kopsalis, I.
    Mcmahon, S.
    Mulvey, J.
    Plackett, R.
    Weatherill, D.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (01)
  • [24] SILICON DETECTORS OF NUCLEAR RADIATION PRODUCED BY LOW-ENERGY ION-IMPLANTATION
    SUEVA, D
    CHIKOV, N
    AMOV, B
    KALINKOVA, N
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1988, 35 (01): : 95 - 99
  • [25] Fabrication of metal's nanoparticles in silicon and sapphire by low energy ion implantation
    Mirkarimov, D. Kh.
    Radjabov, T. D.
    Kamardin, A. I.
    Khakimov, Z. T.
    2007 THIRD IEEE/IFIP INTERNATIONAL CONFERENCE IN CENTRAL ASIA ON INTERNET, 2007, : 206 - +
  • [26] Effect of inelastic ion collisions on low-gain avalanche detectors explained by an ASi-Sii-defect mode
    Lauer, Kevin
    Reiss, Stephanie
    Flototto, Aaron
    Peh, Katharina
    Bratek, Dominik
    Mueller, Robin
    Schulze, Dirk
    Beenken, Wichard
    Hiller, Erik
    Ortlepp, Thomas
    Krischok, Stefan
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2024, 555
  • [27] Study of surface activation of PET by low energy (keV) Ni+ and N+ ion implantation
    Nathawat, Rashi
    Kumar, Anil
    Kulshrestha, V.
    Vijay, Y. K.
    Kobayashi, T.
    Kanjilal, D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2008, 266 (21): : 4749 - 4756
  • [28] Thin dead-layer avalanche photodiodes enable low-energy ion measurements
    Ogasawara, K.
    Livi, S. A.
    Grotheer, E.
    McComas, D. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 614 (02): : 271 - 277
  • [29] Materials science issues for the fabrication of nanocrystal memory devices by ultra low energy ion implantation
    Claverie, A.
    Bonafos, C.
    Ben Assayag, G.
    Schamm, S.
    Cherkashin, N.
    Paillard, V.
    Dimitrakis, P.
    Kapetenakis, E.
    Tsoukalas, D.
    Muller, T.
    Schmidt, B.
    Heinig, K. H.
    Perego, M.
    Fanciulli, M.
    Mathiot, D.
    Carrada, M.
    Normand, P.
    DIFFUSION IN SOLIDS AND LIQUIDS: MASS DIFFUSION, 2006, 258-260 : 531 - +
  • [30] Fabrication of GdSi2 film by low-energy ion-beam implantation
    Li, YL
    Chen, NF
    Zhou, JP
    Song, SL
    Yang, SY
    Liu, ZK
    JOURNAL OF CRYSTAL GROWTH, 2004, 262 (1-4) : 186 - 190