Numerical model development for the prediction of thermal energy storage system performance: CFD study

被引:2
|
作者
Dora, Nagaraju [1 ]
Mohammad, Abdul Razack [1 ]
Chigurupati, Ramsai [2 ]
机构
[1] GITAM Univ, Dept Mech Engn, Visakhapatnam 530045, Andhra Pradesh, India
[2] TVS Motors, Bengaluru 560117, India
关键词
Discrete heating; Latent heat storage; Natural convection; Computational fluid dynamics; PHASE-CHANGE MATERIAL; HEAT-TRANSFER; INCLINATION ANGLE; PCM; ENHANCEMENT; CONVECTION; ENCLOSURES; DESIGN; SINKS; FINS;
D O I
10.1007/s40095-020-00361-1
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A latent heat storage system to store available energy, to control excess heat generation and its management has gained vital importance due to its retrieve possibility. The design of geometry parameters for the energy storage system is of prime interest before experimentation. In the present study, a numerical investigation of 2D square enclosure filled with phase change material and discrete heating (L-d = 0.2 L, 0.4 L, 0.6 L, and 0.8 L) from the bottom while maintaining heater at constant heat flux has been carried out using the finite volume method. The enthalpy- porosity method was employed to model the phase change material melting process and optimum heater location predicted by solving fluid flow and heat transfer governing equations. Validation studies were conducted for two different geometries square and rectangular subjected to different boundary conditions. The results of the present work are depicted in terms of isotherms, liquid fraction, local phase change material temperature, and average phase change material temperature. It is observed both L-d = 0.2 L and 0.4 L locations have ensured the complete melting rate than other L-d = 0.6 L, 0.8 L locations. Moreover, energy stored by phase change material while heater at L-d = 0.4 L, 0.6 L, 0.8 L is decreased by 9.33%, 50.16%, and 53.05% respectively than compared to L-d = 0.2 L. Thus, the developed numerical model predicts that the enclosure type latent heat storage system is sensitive to the heater location for a given boundary condition.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
  • [31] CFD analyses for the development of an innovative latent thermal energy storage for food transportation
    Calati M.
    Righetti G.
    Zilio C.
    Hooman K.
    Mancin S.
    International Journal of Thermofluids, 2023, 17
  • [32] A Study of Aquifer Thermal Energy Storage:Numerical Simulation of Thermal Storage Experiments in Shanghai
    Xue Yuqun Dept.of Earth Sciences
    Acta Geologica Sinica(English Edition), 1989, (03) : 297 - 311
  • [33] Numerical modeling on the performance of aquifer thermal energy storage system under cyclic flow regime
    Lee, Kun Sang
    Jeong, Sang Jin
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2008, 5 (1-2) : 1 - 14
  • [34] Numerical study of dynamic melting enhancement in a latent heat thermal energy storage system
    Gasia, Jaume
    Groulx, Dominic
    Tay, N. H. Steven
    Cabeza, Luisa F.
    JOURNAL OF ENERGY STORAGE, 2020, 31
  • [35] NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE
    Li, Pengda
    Xu, Chao
    Liao, Zhirong
    Ju, Xing
    Ye, Feng
    FRONTIERS IN HEAT AND MASS TRANSFER, 2020, 15 (01): : 1 - 10
  • [36] Numerical study of ice freezing process on fin aided thermal energy storage system
    Sharma, Amrita
    Parth, P.
    Shobhana, S.
    Bobin, M.
    Hardik, B.K.
    International Communications in Heat and Mass Transfer, 2022, 130
  • [37] Numerical study of ice freezing process on fin aided thermal energy storage system
    Sharma, Amrita
    Parth, P.
    Shobhana, S.
    Bobin, M.
    Hardik, B. K.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 130
  • [38] Experimental study on thermal performance of a mobilized thermal energy storage system: A case study of hydrated salt latent heat storage
    Wang, Yan
    Yu, Kaixiang
    Ling, Xiang
    ENERGY AND BUILDINGS, 2020, 210
  • [39] Study on performance effects for battery energy storage rack in thermal management system
    Yan, Wei-Mon
    Jiang, Bing-Chen
    Chen, Bo-Lin
    Li, Chun-Han
    Rashidi, Saman
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 161
  • [40] Performance study of a packed bed in a closed loop thermal energy storage system
    Chai, Lei
    Wang, Liang
    Liu, Jia
    Yang, Liang
    Chen, Haisheng
    Tan, Chunqing
    ENERGY, 2014, 77 : 871 - 879