High-pressure Raman study of microcrystalline WO3 tungsten oxide

被引:67
|
作者
Boulova, M
Rosman, N
Bouvier, P
Lucazeau, G
机构
[1] Ecole Natl Super Electrochim & Electrome Grenoble, Inst Natl Polytech Grenoble, Lab Electrochim & Physicochim Mat & Interfaces, CNRS,UMR 5631, F-38402 St Martin Dheres, France
[2] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119899, Russia
关键词
D O I
10.1088/0953-8984/14/23/314
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A high-pressure Raman study of microcrystalline tungsten oxide was performed in the 0.1 MPa-30 GPa pressure range under hydrostatic and non-hydrostatic conditions. Two phase transitions are evidenced; they take place below 0.1 GPa and at about 22 GPa and are of first order. Two spectral anomalies are observed at about 3 and 10 GPa; they may be related to diffuse weak structural transitions. The number of observed Raman bands remains practically unchanged in the 0.1-30 GPa range and thus the symmetry changes are likely to be small. Surprisingly, the non-hydrostatic conditions do not induce inhomogeneous band broadening and do not modify the transition sequence observed in hydrostatic conditions. The compressibilities of the different observed phases are estimated from spectral data and discussed within Hazen's polyhedral approach.
引用
收藏
页码:5849 / 5863
页数:15
相关论文
共 50 条
  • [21] High-pressure Raman study of SnGeS3
    Stergiou, VC
    Raptis, YS
    Popovic, ZV
    Anastassakis, E
    HIGH PRESSURE RESEARCH, 2000, 18 (1-6) : 189 - 194
  • [22] Study on Tungsten Oxide (WO3) Nanostructures Formation via Seeded Growth Hydrothermal Reaction
    Makhsin, Siti Rabizah
    Razak, Khairunisak Abdul
    Lockman, Zainovia
    EXPERIMENTAL MECHANICS AND MATERIALS, 2011, 83 : 204 - 209
  • [23] Graphene oxide–tungsten oxide (GO–WO3) adsorbent for the removal of copper ion
    Mashhoor H.M.
    Eftekhari M.
    Rezazadeh N.
    Nazarabad M.K.
    Nanotechnology for Environmental Engineering, 2023, 8 (01) : 75 - 86
  • [24] Study of photoactivity of tungsten trioxide (WO3) for water splitting
    Enesca, Alexandru
    Duta, Anca
    Schoonman, Joop
    THIN SOLID FILMS, 2007, 515 (16) : 6371 - 6374
  • [25] Continuous flow synthesis of tungsten oxide (WO3) nanoplates from tungsten (VI) ethoxide
    Gimeno-Fabra, Miquel
    Dunne, Peter
    Grant, David
    Gooden, Pete
    Lester, Edward
    CHEMICAL ENGINEERING JOURNAL, 2013, 226 : 22 - 29
  • [26] Extensive Investigation of High-Pressure Tungsten Dioxide β-WO2
    Ziegler, Raimund
    Reimann, Maximilian K.
    Lammer, Nadine
    Rendenbach, Bettina
    Johrendt, Dirk
    Poettgen, Rainer
    Huppertz, Hubert
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2022, 648 (23):
  • [27] Preparation, characterization, and optical spectroscopic studies of nanocrystalline tungsten oxide WO3
    Afify, H. H.
    Hassan, S. A.
    Obaida, M.
    Moussa, I
    Abouelsayed, A.
    OPTICS AND LASER TECHNOLOGY, 2019, 111 : 604 - 611
  • [28] Tungsten oxide (WO3) thin films for application in advanced energy systems
    Gullapalli, S. K.
    Vemuri, R. S.
    Manciu, F. S.
    Enriquez, J. L.
    Ramana, C. V.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2010, 28 (04): : 824 - 828
  • [29] Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor
    Shukla, Sheifali
    Chaudhary, Savita
    Umar, Ahmad
    Chaudhary, Ganga Ram
    Mehta, S. K.
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 196 : 231 - 237
  • [30] Ammonia sensing at ambient temperature using tungsten oxide (WO3) nanoparticles
    Jeevitha, G.
    Mangalaraj, D.
    MATERIALS TODAY-PROCEEDINGS, 2019, 18 : 1602 - 1609