Lorentz-covariant deformed algebra with minimal length

被引:53
|
作者
Quesne, C.
Tkachuk, V. M.
机构
[1] Univ Libre Bruxelles, B-1050 Brussels, Belgium
[2] Ivan Franko Lviv Natl Univ, Chair Theoret Phys, UA-79005 Lvov, Ukraine
关键词
deformed algebras; Poincare transformations; uncertainty relations; Dirac equation; supersymmetric quantum mechanics;
D O I
10.1007/s10582-006-0436-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The D-dimensional two-parameter deformed algebra with minimal length introduced by Kempf is generalized to a Lorentz-covariant algebra describing a (D + 1)-dimensional quantized space-time. For D = 3, it includes Snyder algebra as a special case. The deformed Poincare transformations leaving the algebra invariant are identified. Uncertainty relations are studied. In the case of D = 1 and one nonvanishing parameter, the bound-state energy spectrum and wavefunctions of the Dirac oscillator are exactly obtained.
引用
收藏
页码:1269 / 1274
页数:6
相关论文
共 50 条
  • [11] LORENTZ-COVARIANT THEORIES OF GRAVITATION
    BASANO, L
    JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (02): : L28 - &
  • [12] A LORENTZ-COVARIANT LOW EQUATION
    ENFLO, BO
    ARKIV FOR FYSIK, 1965, 28 (01): : 17 - &
  • [13] Lorentz-Covariant Hamiltonian Formalism
    A. Bérard
    H. Mohrbach
    P. Gosselin
    International Journal of Theoretical Physics, 2000, 39 : 1055 - 1068
  • [14] Lorentz-Covariant Hamiltonian formalism
    Bérard, A
    Mohrbach, H
    Gosselin, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (04) : 1055 - 1068
  • [15] Lorentz-covariant distributions with spectral conditions
    Yu. M. Zinoviev
    Theoretical and Mathematical Physics, 2008, 156 : 1247 - 1267
  • [16] Lorentz-Covariant Loop Quantum Gravity
    S. Yu. Aleksandrov
    Theoretical and Mathematical Physics, 2004, 139 : 751 - 765
  • [17] Standing Waves in the Lorentz-Covariant World
    Y. S. Kim
    Marilyn E. Noz
    Foundations of Physics, 2005, 35 : 1289 - 1305
  • [18] LORENTZ-COVARIANT QUANTIZATION OF THE HETEROTIC SUPERSTRING
    GATES, SJ
    GRISARU, MT
    LINDSTROM, U
    ROCEK, M
    SIEGEL, W
    VANNIEUWENHUIZEN, P
    VANDEVEN, AE
    PHYSICS LETTERS B, 1989, 225 (1-2) : 44 - 48
  • [19] Lorentz-covariant loop quantum gravity
    Aleksandrov, SY
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (03) : 751 - 765
  • [20] A Lorentz-Covariant Connection for Canonical Gravity
    Geiller, Marc
    Lachieze-Rey, Marc
    Noui, Karim
    Sardelli, Francesco
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7