Quantum annealing learning search for solving QUBO problems

被引:19
|
作者
Pastorello, Davide [1 ]
Blanzieri, Enrico [2 ]
机构
[1] Univ Trento, Dept Math, Trento Inst Fundamental Phys & Applicat, Via Sommar 14, I-38123 Povo, Trento, Italy
[2] Univ Trento, Dept Engn & Comp Sci, Via Sommar 9, I-38123 Povo, Trento, Italy
关键词
Quantum annealing; Optimization problems; Tabu search;
D O I
10.1007/s11128-019-2418-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a novel strategy to solve optimization problems within a hybrid quantum-classical scheme based on quantum annealing, with a particular focus on QUBO problems. The proposed algorithm implements an iterative structure where the representation of an objective function into the annealer architecture is learned and already visited solutions are penalized by a tabu-inspired search. The result is a heuristic search equipped with a learning mechanism to improve the encoding of the problem into the quantum architecture. We prove the convergence of the algorithm to a global optimum in the case of general QUBO problems. Our technique is an alternative to the direct reduction of a given optimization problem into the sparse annealer graph.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Solving the sparse QUBO on multiple GPUs for Simulating a Quantum Annealer
    Imanaga, Tomohiro
    Nakano, Koji
    Yasudo, Ryota
    Ito, Yasuaki
    Kawamata, Yuya
    Katsuki, Ryota
    Ozaki, Shiro
    Yazane, Takashi
    Hamano, Kenichiro
    2021 NINTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR 2021), 2021, : 19 - 28
  • [22] Quantum image denoising: a framework via Boltzmann machines, QUBO, and quantum annealing
    Kerger, Phillip
    Miyazaki, Ryoji
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [23] Efficiently embedding QUBO problems on adiabatic quantum computers
    Date, Prasanna
    Patton, Robert
    Schuman, Catherine
    Potok, Thomas
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [24] Efficiently embedding QUBO problems on adiabatic quantum computers
    Prasanna Date
    Robert Patton
    Catherine Schuman
    Thomas Potok
    Quantum Information Processing, 2019, 18
  • [25] Abstract Argumentation Goes Quantum: An Encoding to QUBO Problems
    Baioletti, Marco
    Santini, Francesco
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 46 - 60
  • [26] Learning while solving problems in best first search
    Sarkar, S
    Chakrabarti, PP
    Ghose, S
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1998, 28 (04): : 535 - 542
  • [27] Learning while solving problems in best first search
    Indian Inst of Technology, Guwahati, India
    IEEE Trans Syst Man Cybern Pt A Syst Humans, 4 (535-542):
  • [28] Solving a Higgs optimization problem with quantum annealing for machine learning
    Mott, Alex
    Job, Joshua
    Vlimant, Jean-Roch
    Lidar, Daniel
    Spiropulu, Maria
    NATURE, 2017, 550 (7676) : 375 - +
  • [29] Solving a Higgs optimization problem with quantum annealing for machine learning
    Alex Mott
    Joshua Job
    Jean-Roch Vlimant
    Daniel Lidar
    Maria Spiropulu
    Nature, 2017, 550 : 375 - 379
  • [30] Solving larger maximum clique problems using parallel quantum annealing
    Elijah Pelofske
    Georg Hahn
    Hristo N. Djidjev
    Quantum Information Processing, 22